You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive coverage of hardware security concepts, derived from the unique characteristics of emerging logic and memory devices and related architectures. The primary focus is on mapping device-specific properties, such as multi-functionality, runtime polymorphism, intrinsic entropy, nonlinearity, ease of heterogeneous integration, and tamper-resilience to the corresponding security primitives that they help realize, such as static and dynamic camouflaging, true random number generation, physically unclonable functions, secure heterogeneous and large-scale systems, and tamper-proof memories. The authors discuss several device technologies offering the desired properties (including spintronics switches, memristors, silicon nanowire transistors and ferroelectric devices) for such security primitives and schemes, while also providing a detailed case study for each of the outlined security applications. Overall, the book gives a holistic perspective of how the promising properties found in emerging devices, which are not readily afforded by traditional CMOS devices and systems, can help advance the field of hardware security.
Get up to speed with the future of logic switch design with this indispensable introduction to post-CMOS technologies.
Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal–oxide–semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world. These include: Nanoscale advances in current MOSFET/CMOS technology Nano capacitors for applications such as electronics packag...
This book is a single-source solution for anyone who is interested in exploring emerging reconfigurable nanotechnology at the circuit level. It lays down a solid foundation for circuits based on this technology having considered both manual as well as automated design flows. The authors discuss the entire design flow, consisting of both logic and physical synthesis for reconfigurable nanotechnology-based circuits. The authors describe how transistor reconfigurable properties can be exploited at the logic level to have a more efficient circuit design flow, as compared to conventional design flows suited for CMOS. Further, the book provides insights into hardware security features that can be intrinsically developed using the runtime reconfigurable features of this nanotechnology.
Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
This book constitutes the refereed proceedings of the 16th International Conference on Intelligent Computer Mathematics, CICM 2023, held in Cambridge, UK, in September 2023. The 14 full papers, 2 project/survey papers, 6 short papers, and 1 tool paper presented were carefully reviewed and selected from a total of 37 submissions. The papers focus on advances in formalization, automatic theorem proving and learning, search and classification, teaching and geometric reasoning, and logic and systems, among other topics.
Current leading-edge CMOS transistors are about as small as they will get. We now have a simple, clear, very physical understanding of how these devices function, but it has not yet entered our textbooks. Besides, CMOS logic transistors, power transistors are increasingly important as are III-V heterostructure transistors for high-frequency communication. Transistor reliability is also important but rarely treated in introductory textbooks.As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes modern electronics possible. That is the goal of these lectures. This volume rearranges the familiar topics and distills the most essential among them, while adding most recent approaches which have become crucial to the discussion. To follow the lectures, readers need only a basic understanding of semiconductor physics. Familiarity with transistors and electronic circuits is helpful, but not assumed.Related Link(s)
The transistor is the key enabler of modern electronics. Progress in transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to device physics are less and less suitable. These lectures describe a way of understanding MOSFETs and other transistors that is much more suitable than traditional approaches when the critical dimensions are measured in nanometers. It uses a novel, “bottom-up approach” that agrees with traditional methods when devices are large, but that also works for nano-devices. Surprisingly, the final result looks much like the traditional, textbook, transistor models, but the parameters in the equations have simple, clear interpretations at the nanoscale. The objective is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits.
This textbook comprehensively covers on-chip interconnect dimension and application of carbon nanomaterials for modeling VLSI interconnect and buffer circuits. It provides analysis of ultra-low power high speed nano-interconnects based on different facets such as material modeling, circuit modeling and the adoption of repeater insertion strategies and measurement techniques. It covers important topics including on-chip interconnects, interconnect modeling, electrical impedance modeling of on-chip interconnects, modeling of repeater buffer and variability analysis. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understandi...
Collaboration between those working in product development and production is essential for successful product realization. The Swedish Production Academy (SPA) was founded in 2006 with the aim of driving and developing production research and higher education in Sweden, and increasing national cooperation in research and education within the area of production. This book presents the proceedings of SPS2024, the 11th Swedish Production Symposium, held from 23 to 26 April 2024 in Trollhättan, Sweden. The conference provided a platform for SPA members, as well as for professionals from industry and academia interested in production research and education from around the world, to share insight...