You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.
This book, now published in its second edition, covers a wide range of topics relating to the use of radiopharmaceuticals. The basics of nuclear chemistry, radiochemistry, and radiopharmacology are considered in detail, regulatory issues are reviewed, and potential applications in drug development, translational medicine, clinical diagnostics, and targeted therapy are discussed. Compared with the first edition, the chapters on targeted therapy with alpha- and beta-emitting radiopharmaceuticals and theranostics are completely new. Other chapters have been updated and revised as necessary. Radioisotope-based molecular imaging probes (radiopharmaceuticals) provide unprecedented insights into biochemistry and function in both normal and diseased states of living systems, with unbiased in vivo measurements of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology, including functional magnetic resonance imaging, can provide such high sensitivity and specificity at a tracer level. This book, written by an experienced radiochemist and scientist, offers valuable insights into the full range of applications of this technology.
The AACR Annual Meeting is a must-attend event for cancer researchers and the broader cancer community. This year's theme, "Delivering Cures Through Cancer Science," reinforces the inextricable link between research and advances in patient care. The theme will be evident throughout the meeting as the latest, most exciting discoveries are presented in every area of cancer research. There will be a number of presentations that include exciting new data from cutting-edge clinical trials as well as companion presentations that spotlight the science behind the trials and implications for delivering improved care to patients. This book contains abstracts 2697-5293 presented on April 19-20, 2016, at the AACR Annual Meeting.
Prostate cancer is the commonest male cancer with over 5 million survivors in US alone. Worldwide, the problem is staggering and has attracted significant attention by media, scientists and cancer experts. Significant research, discoveries, innovations and advances in treatment of this cancer have produced voluminous literature which is difficult to synthesize and assimilate by the medical community. Prostate Cancer: A Comprehensive Perspective is a comprehensive and definitive source which neatly resolves this problem. It covers relevant literature by leading experts in basic science, molecular biology, epidemiology, cancer prevention, cellular imaging, staging, treatment, targeted therapeutics and innovative technologies. Prostate Cancer: A Comprehensive Perspective, is a valuable and timely resource for urologists and oncologists.
This book, now in its third edition, aims to promote a deeper understanding of the scientific and clinical basis of nuclear medicine and the new directions in medical imaging. The new edition has been revised and updated to reflect recent changes and to ensure that the contents are in line with likely future directions. The book starts by providing essential information on general pathophysiology, cell structure and cell biology as well as the mechanisms of radiopharmaceutical localization in different tissues and cells. The clinical applications of nuclear medicine are then presented in a series of chapters that cover every major organ system and relate the basic knowledge of anatomy, physiology and pathology to the clinical utilization of various scintigraphic modalities. The therapeutic applications of nuclear medicine are discussed in a separate chapter, and the final chapter is devoted to the biologic effects of ionizing radiations, including radiation from medical procedures.
The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. This up-to-date, comprehensive book, written by world-renowned experts, discusses the basic principles of radionuclide therapy, explores in detail the available treatments, explains the regulatory requirements, and examines likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the role of the therapeutic nuclear physician in coordinating a diverse multidisciplinary team, which is central to the safe provision of treatment.
An integrated overview of cancer drug discovery and development from the bench to the clinic, showing with broad strokes and representative examples the drug development process as a network of linked components leading from the discovered target to the ultimate therapeutic product. Following a systems biology approach, the authors explain genomic databases and how to discover oncological targets from them, how then to advance from the gene and transcript to the level of protein biochemistry, how next to move from the chemical realm to that of the living cell and, ultimately, pursue animal modeling and clinical development. Emerging cancer therapeutics including Ritux an, Erbitux, Gleevec Herceptin, Avastin, ABX-EGF, Velcade, Kepivance, Iressa, Tarceva, and Zevalin are addressed. Highlights include cancer genomics, pharmacogenomics, transcriptomics, gene expression analysis, proteomic and enzymatic cancer profiling technologies, and cellular and animal approaches to cancer target validation.
This volume focuses on our current understanding of the molecular underpinnings of prostate cancer and their potential application for precision medicine approaches. The emergence and applications of new technologies has allowed for a rapid expansion of our understanding of the molecular basis of prostate cancer and has revealed a remarkable genetic heterogeneity that may underlie the clinically variable behavior of the disease. The book consists of five sections which provide insight about the following: (1) General principles; (2) Molecular signatures of primary prostate cancer; (3) Molecular signatures of advanced prostate cancer; (4) Key molecular pathways in prostate cancer development and progression; (5) and Precision medicine approach: Diagnosis, treatment, prognosis. Precision Molecular Pathology of Prostate Cancer is an important resource for the practicing oncologist, urologist, and pathologist, and will also be useful for researchers in the prostate cancer community.
Nuclear Medicine Therapy presents the state of the art in targeted radionuclide therapy, both in clinical practice and contemporary clinical investigation and trials. With contributions from an internationally-distinguished group of physicians and scientists, the book is devoted entirely to the use of nuclear medicine techniques and technology for therapy of malignant and benign diseases. Individual chapters cover the scientific principles and clinical applications of radionuclide therapy and the state of clinical trials of agents currently under investigation in the therapy of tumors involving virtually every organ system. Due to overlapping interest in techniques, indications, and clinical...