You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first book devoted to low power circuit design, and its authors have been among the first to publish papers in this area.· Low-Power CMOS VLSI Design· Physics of Power Dissipation in CMOS FET Devices· Power Estimation· Synthesis for Low Power· Design and Test of Low-Voltage CMOS Circuits· Low-Power Static Ram Architectures· Low-Energy Computing Using Energy Recovery Techniques· Software Design for Low Power
System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.
This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.
CD-ROM contains: AIM SPICE (from AIM Software) -- Micro-Cap 6 (from Spectrum Software) -- Silos III Verilog Simulator (from Simucad) -- Adobe Acrobat Reader 4.0 (from Adobe).
This book constitutes the refereed proceedings of the 16th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2006. The book presents 41 revised full papers and 23 revised poster papers together with 4 key notes and 3 industrial abstracts. Topical sections include high-level design, power estimation and modeling memory and register files, low-power digital circuits, busses and interconnects, low-power techniques, applications and SoC design, modeling, and more.
A discussion of a compressed-domain approach for designing and implementing digital video coding systems, which is drastically different from the traditional hybrid approach. It demonstrates how the combination of discrete cosine transform (DCT) coders and motion compensated (MC) units reduces power consumption and hardware complexity.
This book provides analysis and discusses the design of various MOSFET technologies which are used for the design of Double-Pole Four-Throw (DP4T) RF switches for next generation communication systems. The authors discuss the design of the (DP4T) RF switch by using the Double-Gate (DG) MOSFET, as well as the Cylindrical Surrounding double-gate (CSDG) MOSFET. The effect of HFO2 (high dielectric material) in the design of DG MOSFET and CSDG MOSFET is also explored. Coverage includes comparison of Single-gate MOSFET and Double-gate MOSFET switching parameters, as well as testing of MOSFETs parameters using image acquisition.
System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.
Selected, peer reviewed papers from the 2015 International Conference on Mechanical and Aeronautical Engineering, December 12-14, 2015, Singapore
This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and rel...