You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text introduces cryptography, from its earliest roots to cryptosystems used today for secure online communication. Beginning with classical ciphers and their cryptanalysis, this book proceeds to focus on modern public key cryptosystems such as Diffie-Hellman, ElGamal, RSA, and elliptic curve cryptography with an analysis of vulnerabilities of these systems and underlying mathematical issues such as factorization algorithms. Specialized topics such as zero knowledge proofs, cryptographic voting, coding theory, and new research are covered in the final section of this book. Aimed at undergraduate students, this book contains a large selection of problems, ranging from straightforward to difficult, and can be used as a textbook for classes as well as self-study. Requiring only a solid grounding in basic mathematics, this book will also appeal to advanced high school students and amateur mathematicians interested in this fascinating and topical subject.
A comprehensive introduction which will be essential to the complete beginner who wants to learn the fundamentals of programming using a modern, powerful and expressive language; as well as those wanting to update their programming skills by making the move from earlier versions of Fortran.
This textbook is aimed at transitioning high-school students who have already developed proficiency in mathematical problem solving from numerical-answer problems to proof-based mathematics. It serves to guide students on how to write and understand mathematical proofs. It covers proof techniques that are commonly used in several areas of mathematics, especially number theory, combinatorics, and analysis. In addition to just teaching the mechanics of proofs, this book showcases key materials in these areas, thus introducing readers to interesting mathematics along with proof techniques.
Algebraic Topology is an introductory textbook based on a class for advanced high-school students at the Stanford University Mathematics Camp (SUMaC) that the authors have taught for many years. Each chapter, or lecture, corresponds to one day of class at SUMaC. The book begins with the preliminaries needed for the formal definition of a surface. Other topics covered in the book include the classification of surfaces, group theory, the fundamental group, and homology. This book assumes no background in abstract algebra or real analysis, and the material from those subjects is presented as needed in the text. This makes the book readable to undergraduates or high-school students who do not have the background typically assumed in an algebraic topology book or class. The book contains many examples and exercises, allowing it to be used for both self-study and for an introductory undergraduate topology course.
This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.
Surveys the state-of-the-art in combinatorial game theory, that is games not involving chance or hidden information.
A Complete Black Repertoire against 1.e4 Built around the Super-solid Rubinstein! The solid Rubinstein Variation of the French Defense – despite its having been played by world champions and elite grandmasters, it has never been subjected to detailed study. The author, German International Master Hannes Langrock, has produced a book with complete coverage of this line, along with solid recommendations for Black should White deviate on the second or third move. The first edition was widely acclaimed, and the second edition has been revised and expanded. “I never realized that Black could take such active measures in the Rubinstein Variation without significant drawbacks. This book is an e...
The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.
This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n i...