You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a selection of high quality articles on number theory by leading figures.
This volume contains the proceedings of the 17th International Conference on Arithmetic, Geometry, Cryptography and Coding Theory (AGC2T-17), held from June 10–14, 2019, at the Centre International de Rencontres Mathématiques in Marseille, France. The conference was dedicated to the memory of Gilles Lachaud, one of the founding fathers of the AGC2T series. Since the first meeting in 1987 the biennial AGC2T meetings have brought together the leading experts on arithmetic and algebraic geometry, and the connections to coding theory, cryptography, and algorithmic complexity. This volume highlights important new developments in the field.
This book covers the whole spectrum of number theory, and is composed of contributions from some of the best specialists worldwide.
This is the 13th annual volume of papers based on lectures given at the Seminaire des Nombres de Paris. The results presented here by an international group of mathematicians reflect recent work in many areas of number theory and should form a basis for further discussion on these topics.
To observe the tenth anniversary of the founding of the Ramanujan Mathematical Society, an international conference on Discrete Mathematics and Number Theory was held in January 1996 in Tiruchirapalli, India. This volume contains proceedings from the number theory component of that conference. Papers are divided into four groups: arithmetic algebraic geometry, automorphic forms, elementary and analytic number theory, and transcendental number theory. This work deals with recent progress in current aspects of number theory and covers a wide variety of topics.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This book provides an exposition of function field arithmetic withemphasis on recent developments concerning Drinfeld modules, thearithmetic of special values of transcendental functions (such as zetaand gamma functions and their interpolations), diophantineapproximation and related interesting open problems.
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.