You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rock salt formations have long been recognized as a valuable resource - not only for salt mining but for construction of oil and gas storage caverns and for isolation of radioactive and other hazardous wastes. Current interest is fast expanding towards construction and re-use of solution-mined caverns for storage of renewable energy in the form of hydrogen, compressed air and other gases. Evaluating the long term performance and safety of such systems demands an understanding of the coupled mechanical behavior and transport properties of salt. This volume presents a collection of 60 research papers defining the state-of-the-art in the field. Topics range from fundamental work on deformation ...
Carbon capture and sequestration (CCS) technologies aim to allow the continued use of fossil fuels by outputting carbon in a form other than atmospheric CO2. Several types of geologic reservoirs are considered as alternatives; of these, deep saline aquifers have the largest potential storage capacity worldwide. Unfortunately, neat CO2 injected into an aquifer is less dense than the native brine. The resulting buoyancy presents a potential for leakage from the storage formation, and, ultimately, to the atmosphere. This work describes a method for using coal to produce electricity that creates a pre-equilibrated brine/CO2 solution for injection into a saline aquifer. Such solutions are more de...
Silicon Compounds: Advances in Research and Application: 2011 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about Silicon Compounds in a concise format. The editors have built Silicon Compounds: Advances in Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Silicon Compounds in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Silicon Compounds: Advances in Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
It is generally accepted within the scientific community that anthropogenic emissions of greenhouse gases are primarily responsible for a recent warming in global climate and that current trajectories of emissions may lead to potentially catastrophic changes in climate. While reduction in emissions of greenhouse gases, and particularly carbon dioxide, could lead to a stabilisation of global temperatures, this requires international agreements which have yet to be achieved. A possible alternative, which has been widely mooted is to use methods known as geoengineering as an alternative way of limiting increases in global temperature. Geoengineering techniques fall into two main categories of c...
Greenhouse gas removal (GGR) technologies can remove greenhouse gases such as carbon dioxide from the atmosphere. Most of the current GGR technologies focus on carbon dioxide removal, these include afforestation and reforestation, bioenergy with carbon capture and storage, direct air capture, enhanced weathering, soil carbon sequestration and biochar, ocean fertilisation and coastal blue carbon. GGR technologies will be essential in limiting global warning to temperatures below 1.5°C (targets by the IPCC and COP21) and will be required to achieve deep reductions in atmospheric CO2 concentration. In the context of recent legally binding legislation requiring the transition to a net zero emis...
Reservoir quality of Rotliegend sandstones is mainly controlled by their permeability, and porosity, and their mechanical properties. Thus, diagenetic porosity-reducing processes need to be understood to evaluate reservoir quality and geotechnical properties in sandstones. Best reservoir qualities are achieved in mature sandstones with large amounts of quartz cementation. The relative length of grain-contacts compared to the respective grain diameter is identified as proxy for rock strength.
The secure storage of energy and carbon dioxide in subsurface geological formations plays a crucial role in transitioning to a low-carbon energy system. The suitability and security of subsurface storage sites rely on the geological and hydraulic properties of the reservoir and confining units. Additionally, their ability to withstand varying thermal, mechanical, hydraulic, biological and chemical conditions during storage operations is essential. Each subsurface storage technology has distinct geological requirements and faces specific economic, logistical, public and scientific challenges. As a result, certain sites can be better suited than others for specific low-carbon energy applications. This Special Publication provides a summary of the state of the art in subsurface energy and carbon dioxide storage. It includes 20 case studies that offer insights into site selection, characterization of reservoir processes, the role of caprocks and fault seals, as well as monitoring and risk assessment needs for subsurface storage operations.
Geophysics and the Energy Transition involves four sections: What is the Energy Transition and why storage so important; selecting sites for storage; advanced monitoring technology; and moving forward to integrating Carbon Capture and Storage (CCS) within the Energy Transition. Geophysics will also play a role in finding and developing alternatives to fossil fuels such as natural hydrogen and geothermal using much of the knowledge gained from the CO2 storage industry. To provide the public and others with the confidence to move forward with a structured and cost-effective energy transition, this book provides the necessary evidence that we can store CO2 safely and effectively and use this as...
Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generat...
Particle Strengths A holistic and straightforward analysis framework for understanding particle strength distributions In Particle Strengths: Extreme Value Distributions in Fracture, distinguished researcher Dr. Robert F. Cook delivers a thorough exploration of the science and related engineering of fracture strength distributions of single particles tested in diametral compression. In the book, the author explains particle strengths in the broader context of material strengths to permit readers to design with particles in systems in which mechanical properties are crucial to application, manufacturing, and handling. Particle Strengths compiles published data on particle strengths into a com...