You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint sit...
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them. Universal Algebra and Applications in Theoretical Computer Science introduces the basic concepts of universal algebra and surveys some of the newer developments in the field. The first half of the book provides a solid grounding in the core material. A leisurely pace, careful exposition, ...
None
This book constitutes the refereed proceedings of the 23rd Conference on Foundations of Software Technology and Theoretical Computer Science, FST TCS 2003, held in Mumbai, India in December 2003. The 23 revised full papers presented together with 4 invited papers and the abstract of an invited paper were carefully reviewed and selected from 160 submissions. A broad variety of current topics from the theory of computing are addressed, ranging from algorithmics and discrete mathematics to logics and programming theory.
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.
This volume contains the papers presented at the 29th Symposium on Mat- matical Foundations of Computer Science, MFCS 2004, held in Prague, Czech Republic, August 22–27, 2004. The conference was organized by the Institute for Theoretical Computer Science (ITI) and the Department of Theoretical Com- terScienceandMathematicalLogic(KTIML)oftheFacultyofMathematicsand Physics of Charles University in Prague. It was supported in part by the Eu- pean Association for Theoretical Computer Science (EATCS) and the European Research Consortium for Informatics and Mathematics (ERCIM). Traditionally, the MFCS symposia encourage high-quality research in all branches of theoretical computer science. Rangi...
Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the general theory to partial algebras. The last chapter contains exercises and open problems with suggestions for future work in this area of research. Graduate students and mathematical researchers will find Hyperidentities and Clones a thought-provoking and illuminating text that offers a unique opportunity to study the topic in one source.
Formal concept analysis has been developed as a field of applied mathematics based on the mathematization of concept and concept hierarchy. It thereby allows us to mathematically represent, analyze, and construct conceptual structures. The formal concept analysis approach has been proven successful in a wide range of application fields. This book constitutes a comprehensive and systematic presentation of the state of the art of formal concept analysis and its applications. The first part of the book is devoted to foundational and methodological topics. The contributions in the second part demonstrate how formal concept analysis is successfully used outside of mathematics, in linguistics, text retrieval, association rule mining, data analysis, and economics. The third part presents applications in software engineering.
This comprehensive volume presents essential mathematical results devoted to topics of mathematical analysis, differential equations and their various applications. It focuses on differential operators, Wardowski maps, low-oscillation functions, Galois and Pataki connections, Hardy-type inequalities, to name just a few.Effort has been made for this unique title to have an interdisciplinary flavor and features several applications such as in tomography, elastic scattering, fluid mechanics, etc.This work could serve as a useful reference text to benefit professionals, academics and graduate students working in theoretical computer science, computer mathematics, and general applied mathematics.