You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Robots able to imitate human beings have been at the core of stories of science?ctionaswellasdreamsofinventorsforalongtime.Amongthe various skills that Mother Nature has provided us with and that often go forgotten, the ability of sight is certainly one of the most important. Perhaps inspired by tales of Isaac Asimov, comics and cartoons, and surely helped by the progress of electronics in recent decades, researchers have progressively made the dream of creating robots able to move and operate by exploiting arti?cial vision a concrete reality. Technically speaking, we would say that these robots position themselves and their end-e?ectors by using the view provided by some arti?cial eyes as f...
This volume presents a selection of advanced case studies that address a substantial range of issues and challenges arising in space engineering. The contributing authors are well-recognized researchers and practitioners in space engineering and in applied optimization. The key mathematical modeling and numerical solution aspects of each application case study are presented in sufficient detail. Classic and more recent space engineering problems – including cargo accommodation and object placement, flight control of satellites, integrated design and trajectory optimization, interplanetary transfers with deep space manoeuvres, low energy transfers, magnetic cleanliness modeling, propulsion ...
This book provides methods to unify different approaches to tackle stability theory problems. In particular, it presents a methodology to blend approaches obtained from measure theory with methods obtained from Lyapunov’s stability theory. The author summarizes recent works on how different analysis/design methods can be unified and employed for systems that do not belong to either of domains of validity.
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary...
This book presents high-quality original contributions on positive systems, including topics such as: monotone dynamical systems in mathematical biology and game theory; mathematical developments for networked systems in biology, chemistry and the social sciences; linear and nonlinear positive operators; dynamical analysis, observation and control of positive distributed parameter systems; stochastic realization theory; biological systems with positive variables and positive controls; iterated function systems; nonnegative dynamic processes; and dimensioning problems for collaborative systems. The book comprises a selection of the best papers presented at the POSTA 2016, the 5th International Symposium on Positive Systems, which was held in Rome, Italy, in September 2016. This conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems.
This is the first book to focus on the use of nonlinear analysis and synthesis techniques for aircraft control. It is also the first book to address in detail closed-loop control problems for aircraft "on-ground" – i.e. speed and directional control of aircraft before take-off and after touch down. The book will be of interest to engineers, researchers, and students in control engineering, and especially aircraft control.
In practical control problems, many constraints have to be handled in order to design controllers which operate in a real environment. By combining results on robust control and saturating control, this book attempts to provide positive help for practical situations and, as one of the first books to merge the two control fields, it should generate considerable interest in scientific/acad emic circles. The ten chapters, which deal with stabilization and control of both linear and nonlinear systems, are each independent in their approach - some deal purely with theoretical results whilst others concentrate on ways in which the theory can be applied. The book's unity is secured by the desire to formulate control design requirements through constraints on input and model uncertainty description.
Against this current trend of low growth and high uncertainty, business directors must work with their shareholders to set strategic objectives and define business models. The great number of possible strategies makes this type of management very complex, and the actual deployment of strategic choices is often limited by a lack of overall coherence within the organization. This problem calls for an appropriate and renewed response. In strategic management today, a closer, permanent dialogue is needed between operational and financial performance. Based on a supply chain approach, the Value Added Supply Chain (VASC) model focuses on driving operational performance, but aims to achieve a greater and more dynamic integration between these two dimensions of the company's value creation.
Although complexity makes up the very fabric of our daily lives and has been more or less addressed in a wide variety of knowledge fields, the approaches developed in the Natural Sciences and the results obtained over the past century have not yet permeated Management Sciences very much. The main features of the phenomena that the Natural Sciences deal with are: non-linear behavior, self-organization and chaos. They are analyzed with the framing of what is called “systems thinking”, popularized by the mindset pertaining to cybernetics. All pioneers in systems thinking either had direct or indirect connections with Biology, which is the discipline considered complex par excellence by the public. When applying these concepts to Operations Management Systems and modeling organizations by BDI (Beliefs, Desires, Intentions) agents, the lack of predictability in the conduct of change management that is prone to bifurcations (tipping points) in terms of organizational structures and in forecasting future activities, reveals them to be ingrained in the interplay of complexity and chaos.