You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The natural generalization of the quantum-mechanical N-particle wave function to relativistic space-time is a function of N space-time points, and thus of N time variables. This book, based on a collection of lectures given at a spring school in Tübingen in 2019, provides an accessible and concise introduction to the recent development of the theory of multi-time wave functions, their use in quantum field theory, their relation to detection probabilities, and the mathematical question of consistency of their time evolution equations. The book is intended for advanced students and researchers with an interest in relativity and quantum physics.
This volume contains the proceedings of the QMATH13: Mathematical Results in Quantum Physics conference, held from October 8–11, 2016, at the Georgia Institute of Technology, Atlanta, Georgia. In recent years, a number of new frontiers have opened in mathematical physics, such as many-body localization and Schrödinger operators on graphs. There has been progress in developing mathematical techniques as well, notably in renormalization group methods and the use of Lieb–Robinson bounds in various quantum models. The aim of this volume is to provide an overview of some of these developments. Topics include random Schrödinger operators, many-body fermionic systems, atomic systems, effective equations, and applications to quantum field theory. A number of articles are devoted to the very active area of Schrödinger operators on graphs and general spectral theory of Schrödinger operators. Some of the articles are expository and can be read by an advanced graduate student.
This book provides an introduction to the conceptual foundations of quantum mechanics, from classical mechanics and a discussion of the quantum phenomena that undermine our classical intuitions about how the physical world works, to the quantum measurement problem and alternatives to the standard von Neumann-Dirac formulation.
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schrödinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory.
This book introduces and critically appraises the main proposals for how to understand quantum mechanics, namely the Copenhagen interpretation, spontaneous collapse, Bohmian mechanics, many-worlds, and others. The author makes clear what are the crucial problems, such as the measurement problem, related to the foundations of quantum mechanics and explains the key arguments like the Einstein-Podolsky-Rosen argument and Bell’s proof of nonlocality. He discusses and clarifies numerous topics that have puzzled the founding fathers of quantum mechanics and present-day students alike, such as the possibility of hidden variables, the collapse of the wave function, time-of-arrival measurements, explanations of the symmetrization postulate for identical particles, or the nature of spin. Several chapters are devoted to extending the different approaches to relativistic space-time and quantum field theory. The book is self-contained and is intended for graduate students and researchers who want to step into the fundamental aspects of quantum physics. Given its clarity, it is accessible also to advanced undergraduates and contains many exercises and examples to master the subject.
This book treats various aspects of the quantum theory of measurement, partially in a relativistic framework. Measurement(-like) processes in quantum theory are identified and analysed; and the quantum operator formalism is derived in full generality without postulating operators as observables. Consistency conditions are derived, expressing the requirement of Lorentz-frame independence of outcomes of spacelike separated measurements and implying the impossibility of using quantum nonlocality to send signals faster than light. Local commutativity is scrutinized. The localization problem of relativistic quantum theory is studied, including comprehensive derivation of the theorems of Hegerfeld, Malament and Reeh-Schlieder. Finally, the quantum formalism is derived from the dynamics of particles with definite positions in Bohmian mechanics.