You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 1 presents the technical aspects of energy and its main characteristics, and outlines the challenges of the energy transition, the conditions for the development of renewable energies and the geopolitical stakes of this transition. It also describes the various energy markets and the consequences of liberalization policies, not forgetting to analyze the structures of the different sectors, while pointing out the fundamental problems of supply security and ways of strengthening it.
Distribution systems drive energy and societal transition. System planning enables investments to be made in the right place, at the right time and with the right technology. Distribution System Planning is centered on the evolution of planning methods that will best support this transition, and describes the historical context and concepts that enable planning, its challenges and key influencing factors to be grasped. It also analyzes the impact of the development of renewable and decentralized energy resources, government recommendations and distributor initiatives to promote their integration. Through the use of case studies, this book provides examples of how planning methodologies have evolved, as well as an overview of new and emerging solutions.
Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers
Since the early 2000s, energy and environmental issues have led to a marked increase in electricity production from renewable energy sources. Sustainable development and concern for future generations constantly challenge us to develop new technologies for energy production, as well as new energy usage patterns. Their rapid emergence can make these new technologies difficult to understand and can thus affect perceptions. Directed towards a broad audience, this book contributes to a better understanding of new electricity generation technologies. It presents the issues, sources and means of conversion using a general approach, while developing scientific concepts to understand their main technical characteristics. This revised and extended second edition presents current data characterizing the development of these renewable energy sources, covering emerging photovoltaic and tidal technologies, offshore wind power, and recent developments on the integration of these sources into the electricity grid. The emergence of self-production and self-consumption is also addressed. In addition, several exercises provide the reader with an opportunity to evaluate their understanding.
Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International. SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field. The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: the appli...
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 2 examines the energy sector and the state of energy transition continent by continent. North America is rich in resources, while the situation is mixed in South America. Europe advocates transition but remains dependent on imported fossil fuels. The CIS has enormous resources at its disposal and uses them as political weapons. Access to energy is a priority for Africa. Asia is faced with growing energy needs and pollution, which should accelerate energy transition. The Middle East, a champion of hydrocarbons, is launching into solar energy.
The last few decades have seen huge developments in the use of concentrated solar power plants, communications technologies (mobile telephony and 5G networks), the nuclear sector with its small modular reactors and concentrated solar power stations. These developments have called for a new generation of heat exchangers. As well as presenting conventional heat exchangers (shell-and-tube and plate heat exchangers), their design techniques and calculation algorithms, Heat Exchangers introduces new-generation compact heat exchangers, including printed circuit heat exchangers, plate-fin heat exchangers, spiral heat exchangers, cross-flow tube-fin heat exchangers, phase-change micro-exchangers, spray coolers, heat pipe heat exchangers and evaporation chambers. This new generation of heat exchangers is currently undergoing a boom, with applications in on-board equipment in aircraft, locomotives, space shuttles and mobile phones, where the volume of the equipment is one of the most important design parameters.
Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a systems lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.
Although most people are aware of the value of developing new energy technologies, the importance of assessing such technologies is only just beginning to be recognized in full. This book, illustrated by real-life examples, fulfils two main objectives. Firstly, it provides an in-depth summary of energy system evaluation methods, the result of decades of work in this area, for the use of researchers, engineers and anybody else interested in the energy sector. Secondly, the vicious cycle of neglect towards in situ evaluation is broken. This neglect is due to its unjust reputation for being “thankless work”: longwinded, expensive, difficult to exploit and undervalued. By scientifically organizing experience acquired over more than 30 years, Energy Transition highlights the considerable usefulness of the approach, not only economically, but also from a human standpoint.
The major topical and societal issues of energy transition and environmental conservation have benefited from the contribution of nanotechnologies and nanomaterials. Nanomaterials, including carbon-based newcomers, have helped to improve in particular the performance of energy storage and conversion devices. Some of these nanomaterials, including fullerenes, carbon nanotubes, nanodiamonds and carbon dots, were discovered well before the 2000s. Others are more recent, including graphene (the leading material of the 21st century) as well as many mineral materials developed at the nano scale: atomic clusters, metal or semiconductor nanoparticles, two-dimensional inorganic materials, metal-organic frameworks (MOF) and luminescent quantum dots. All of these are involved in the realization of devices for energy purposes. Nanotechnology and Nanomaterials for Energy provides a critical analysis of the latest work in the fields of batteries, photovoltaics, fuel cells and catalysis as well as lighting, with the advent of light-emitting diodes.