You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How a team of musicians, engineers, computer scientists, and psychologists developed computer music as an academic field and ushered in the era of digital music. In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music. In The Sound of Innovation, Andrew N...
How a team of musicians, engineers, computer scientists, and psychologists developed computer music as an academic field and ushered in the era of digital music. In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music. In The Sound of Innovation, Andrew N...
Created in 1985 by Barry Vercoe, Csound is one of the most widely used software sound synthesis systems. Because it is so powerful, mastering Csound can take a good deal of time and effort. But this long-awaited guide will dramatically straighten the learning curve and enable musicians to take advantage of this rich computer technology available for creating music. Written by the world's leading educators, programmers, sound designers, and composers, this comprehensive guide covers both the basics of Csound and the theoretical and musical concepts necessary to use the program effectively. The thirty-two tutorial chapters cover: additive, subtractive, FM, AM, FOF, granular, wavetable, waveguide, vector, LA, and other hybrid methods; analysis and resynthesis using ADSYN, LP, and the Phase Vocoder; sample processing; mathematical and physical modeling; and digital signal processing, including room simulation and 3D modeling. CDs for this book are no longer produced. To request files, please email digitalproducts-cs@mit.edu.
The second volume of a commonsense, self-contained introduction to the mathematics and physics of music, focusing on the digital and computational domain; essential reading for musicians, music engineers, and anyone interested in the intersection of art and science. Volume 2 of Musimathics continues the story of music engineering begun in Volume 1, focusing on the digital and computational domain. Loy goes deeper into the mathematics of music and sound, beginning with digital audio, sampling, and binary numbers, as well as complex numbers and how they simplify representation of musical signals. Chapters cover the Fourier transform, convolution, filtering, resonance, the wave equation, acoustical systems, sound synthesis, the short-time Fourier transform, and the wavelet transform. These subjects provide the theoretical underpinnings of today's music technology. The examples given are all practical problems in music and audio. Additional material can be found at http://www.musimathics.com.
"Spectral Audio Signal Processing is the fourth book in the music signal processing series by Julius O. Smith. One can say that human hearing occurs in terms of spectral models. As a result, spectral models are especially useful in audio applications. For example, with the right spectral model, one can discard most of the information contained in a sound waveform without changing how it sounds. This is the basis of modern audio compression techniques."--Publisher's description.
A digital filter can be pictured as a "black box" that accepts a sequence of numbers and emits a new sequence of numbers. In digital audio signal processing applications, such number sequences usually represent sounds. For example, digital filters are used to implement graphic equalizers and other digital audio effects. This book is a gentle introduction to digital filters, including mathematical theory, illustrative examples, some audio applications, and useful software starting points. The theory treatment begins at the high-school level, and covers fundamental concepts in linear systems theory and digital filter analysis. Various "small" digital filters are analyzed as examples, particularly those commonly used in audio applications. Matlab programming examples are emphasized for illustrating the use and development of digital filters in practice.
From 1981 to 1994, music patron and art collector Betty Freeman (1921--2009) hosted a series of monthly musicales, or salons, in Los Angeles. Most of these salons were held in a room off the den of Freeman's Beverly Hills home--a space she dubbed "the music room." Freeman saw these salons as an important space to foster the development of contemporary composition among leading and upcoming composers in both America and Europe. Over the span of thirteen seasons, 144 composers, performers, and dignitaries in the contemporary music world spoke, performed, and shared their music before a gathering of elite arts administrators, scholars, critics, patrons, and composers from the greater Los Angele...
Expanded, updated, and fully revised—the definitive introduction to electronic music is ready for new generations of students. Essential and state-of-the-art, The Computer Music Tutorial, second edition is a singular text that introduces computer and electronic music, explains its motivations, and puts topics into context. Curtis Roads’s step-by-step presentation orients musicians, engineers, scientists, and anyone else new to computer and electronic music. The new edition continues to be the definitive tutorial on all aspects of computer music, including digital audio, signal processing, musical input devices, performance software, editing systems, algorithmic composition, MIDI, and psy...
A commonsense, self-contained introduction to the mathematics and physics of music; essential reading for musicians, music engineers, and anyone interested in the intersection of art and science. “Mathematics can be as effortless as humming a tune, if you know the tune,” writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music—a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science. In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself “a composer seduced into mathematics,” Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio. Additional material can be found at http://www.musimathics.com.
Electronic and Experimental Music: Technology, Music, and Culture, Fourth Edition provides a comprehensive history of electronic music, covering key composers, genres, and techniques used in both analog and digital synthesis. This textbook has been greatly expanded and revised with the needs of both students and instructors in mind. The reader-friendly style, logical organization, and pedagogical features provide easy access to key ideas, milestones, and concepts. Now a four-part text with fourteen chapters, the new fourth edition features new content: Audio CD of classic works of electronic music—a first for this book. Listening Guides providing annotated, moment-by-moment exploration of ...