You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents up-to-date theory and methods of statistical hypothesis testing based on measure theory. The so-called statistical space is a measurable space adding a family of probability measures. Most topics in the book will be developed based on this term. The book includes some typical data sets, such as the relation between race and the death penalty verdict, the behavior of food intake of two kinds of Zucker rats, and the per capita income and expenditure in China during the 1978-2002 period. Emphasis is given to the process of finding appropriate statistical techniques and methods of evaluating these techniques.
A comprehensive guide to statistical hypothesis testing with examples in SAS and R When analyzing datasets the following questions often arise: Is there a short hand procedure for a statistical test available in SAS or R? If so, how do I use it? If not, how do I program the test myself? This book answers these questions and provides an overview of the most common statistical test problems in a comprehensive way, making it easy to find and perform an appropriate statistical test. A general summary of statistical test theory is presented, along with a basic description for each test, including the necessary prerequisites, assumptions, the formal test problem and the test statistic. Examples in...
This book provides a comprehensive treatment of the logic behind hypothesis testing. Readers will learn to understand statistical hypothesis testing and how to interpret P-values under a variety of conditions including a single hypothesis test, a collection of hypothesis tests, and tests performed on accumulating data. The author explains how a hypothesis test can be interpreted to draw conclusions, and descriptions of the logic behind frequentist (classical) and Bayesian approaches to interpret the results of a statistical hypothesis test are provided. Both approaches have their own strengths and challenges, and a special challenge presents itself when hypothesis tests are repeatedly performed on accumulating data. Possible pitfalls and methods to interpret hypothesis tests when accumulating data are also analyzed. This book will be of interest to researchers, graduate students, and anyone who has to interpret the results of statistical analyses.
The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760.
The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760.
CD-ROM contains: "easy-to-use statistical power analysis program."
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Statistics for the Behavioral Sciences is an introduction to statistics text that will engage students in an ongoing spirit of discovery by illustrating how statistics apply to modern-day research problems. By integrating instructions, screenshots, and practical examples for using IBM SPSS® Statistics software, the book makes it easy for students to learn statistical concepts within each chapter. Gregory J. Privitera takes a user-friendly approach while balancing statistical theory, computation, and application with the technical instruction needed for students to succeed in the modern era of data collection, analysis, and statistical interpretation.
First Published in 2009. Routledge is an imprint of Taylor & Francis, an informa company.