You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The brief gives a comprehensive overview of the polysaccharide applications in the field of battery materials. Included is a historic overview as well as recent developments in the field including new battery types and chemistries. Written in an accessible style by academics, it is aimed at those new to the field as well as individuals who have interest in novel polysaccharide applications. Aimed at advanced undergraduates, academic and industrial researchers and professionals studying or using biobased polymers.
In science as well as in industry, the impetus of research on bio-based polymers has recently expanded into new terrains. The need to replace fossil-based materials with sustainable and renewable sources is one of the main drivers for the emergence and the development of new and environmentally friendly materials. While some materials applications of bio-based polymers are already very well established, for instance, in paper and textiles, others have just emerged with thin films and coatings being a recent and particular area of interest. Thin films in general are an enormous field of research both fundamentally and from an applied perspective, with uses ranging from corrosion resistance to photovoltaics and sensors. Since bio-based materials are a relatively novel source material for thin films, the research in this area is at a fresh, exciting stage at the moment.
This book provides an excellent introduction into polysaccharide-based supercapacitors. It includes fundamental knowledge on supercaps as well as an overview of currently available approaches reported in the literature. Written by an international team of leading academics, this brief is aimed at a variety of readers with an interest in polysaccharide science and its applications.
Vincent Bulone et al.: Cellulose sources and new understanding of synthesis in plants Thomas Heinze et al.:Cellulose structure and properties Thomas Rosenau, Antje Potthast, Ute Henniges et al.: Recent developments in cellulose aging (degradation / yellowing / chromophore formation) Sunkyu Park et al.:Cellulose crystallinity Lina Zhang et al.:Gelation and dissolution behavior of cellulose Yoshiyuki Nishio et al.:Cellulose and derivatives in liquid crystals Alessandro Gandini, Naceur Belgacem et al.:The surface and in-depth modification of cellulose fibers Emily D. Cranston et al.:Interfacial properties of cellulose Herbert Sixta, Michael Hummel et al.Cellulose Fibers Regenerated from Cellulose Solutions in Ionic Liquids Qi Zhou et al.:Cellulose-based biocomposites Orlando Rojas et al.:Films of cellulose nanocrystals and nanofibrils Pedro Fardim et al.:Functional cellulose particles Wadood Hamad et al.:Cellulose Composites
The unique physico-chemical properties of cationic polymers and their ability to be easily modified make them attractive for many biological applications. As a result there is a vast amount of research focussed on designing novel natural or synthetic cationic polymers with specific biological functionality. Cationic Polymers in Regenerative Medicine brings together the expertise of leading experts in the field to provide a comprehensive overview of the recent advances in cationic polymer synthesis, modification and the design of biomaterials with different structures for therapeutic applications. Chapters cover recent developments in novel cationic polymer based systems including poly(L-lysi...
The book Function-oriented bioengineered skin equivalents - continuous development towards complete skin replication aims to provide potential readers with a comprehensive summary of the available information on various in vitro skin models, from historical background to different modeling approaches and their applications. Particular emphasis is placed on presenting the current technological components available for the development of engineered skin equivalents by summarizing advances in cell cultivation, materials science, and bioengineering. Using examples of the current-state-of-art, we describe the advantages, limitations, and challenges of developing in vitro skin models for successful use in clinical applications and skin-related research.
Nanomaterials from Renewable Resources for Emerging Applications details developments in nanomaterials produced from renewable materials and their usage in food and packaging, energy conservation, and environmental applications. • Introduces fundamentals of nanomaterials from renewable resources, including processing and characterization. • Covers nanomaterials for applications in food and packaging, including nanocellulose, lignin- and chitosan-based nanomaterials, and nanostarch. • Discusses applications in energy conservation, such as supercapacitors, electrolyte membranes, energy storage devices, and insulation. • Describes environmental uses such as water remediation and purification and oil spill clean-ups. • Highlights advantages and challenges in commercialization of green nanoparticle-based materials. Equally beneficial to researchers and professionals, this book is aimed at readers across materials science and engineering, chemical engineering, chemistry, and related fields interested in sustainable engineering.
This book provides an essential overview of the science of polysaccharides. It both approaches polysaccharides as a polymer class and provides detailed descriptions of most major polysaccharides (cellulose, mannan, xylan, chitin-chitosan, cyclodextrines). Owing to the multidisciplinary character of the European Polysaccharide Network of Excellence (EPNOE), the book describes all main aspects of polysaccharide science and technology (biology, enzymology, physics, chemistry, materials science and processing). Notations and concepts follow a uniform format throughout the whole work in order to create a valuable reference book on the field of polysaccharide science. Owing to the major importance of industry in the EPNOE, concrete applications are also described in detail.
This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.
This book examines the whole range of modern packaging options. It covers edible packaging based on carbohydrates, proteins, antioxidative and antimicrobial packaging, and the chemistry of food and food packaging, such as plasticization and polymer morphology. Issues related to shelf life and biodegradability are also discussed, in addition to newly discovered processing and preservation techniques, most notably modified atmosphere packaging (MAP) and active packaging (AP).