You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book aims to provide the readers with a wide panorama of different aspects related to Chaos, Complexity and Transport. It consists of a collection of contributions ranging from applied mathematics to experiments, presented during the CCT'07 conference (Marseilles, June 4-8, 2007). The book encompasses different traditional fields of physics and mathematics while trying to keep a common language among the fields, and targets a nonspecialized audience.
This volume contains the proceedings of a workshop which was held in Brussels during the month of August 1989. A strong motivation for organizing this workshop was to bring together people who have been involved in the microscopic simulation of phenomena occuring on "large" space and time scales. Indeed, results obtained in the last years by different groups tend to support the idea that macroscopic behavior already appears in systems small enough so as to be modelled by a collection of interacting particles on a (super) computer. Such an approach is certainly desirable to study situations where no satisfactory phenomenological theory is known to hold, or where solutions of the equations are...
This book contains the courses given at the Fifth School on Complex Systems held at Santiago, Chile, from 9th .to 13th December 1996. At this school met researchers working on areas related with recent trends in Complex Systems, which include dynamical systems, cellular automata, symbolic dynamics, spatial systems, statistical physics and thermodynamics. Scientists working in these subjects come from several areas: pure and applied mathematics, physics, biology, computer science and electrical engineering. Each contribution is devoted to one of the above subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing m...
In memory of Dr. George Zaslavsky, "Long-range Interactions, Stochasticity and Fractional Dynamics" covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.
The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.
More stimulating mathematics puzzles from bestselling author Paul Nahin How do technicians repair broken communications cables at the bottom of the ocean without actually seeing them? What's the likelihood of plucking a needle out of a haystack the size of the Earth? And is it possible to use computers to create a universal library of everything ever written or every photo ever taken? These are just some of the intriguing questions that best-selling popular math writer Paul Nahin tackles in Number-Crunching. Through brilliant math ideas and entertaining stories, Nahin demonstrates how odd and unusual math problems can be solved by bringing together basic physics ideas and today's powerful co...
The present article explores the possibility of an aether medium, also referred to as a virtual inertia/spin superfluid medium, existing to explain certain physical phenomena. While the concept of an aether has been historically rejected by mainstream physics, recent findings and interpretations offer potential justifications for its reconsideration. After discussions with several physicists, notably Robert N. Boyd, PhD and others, we are convinced that aether medium does exist, or may be called virtual inertia/spin superfluid medium.
This book constitutes the refereed proceedings of the 6th International Conference on Cellular Automata for Research and Industry, ACRI 2004, held in Amsterdam, The Netherlands in October 2004. The 60 revised full papers and 30 poster papers presented were carefully reviewed and selected from 150 submissions. The papers are devoted to methods and theory; evolved cellular automata; traffic, networks, and communication; applications in science and engineering; biomedical applications, natural phenomena and ecology; and social and economical applications.
Uniting the foundations of physics and biology, this groundbreaking multidisciplinary and integrative book explores life as a planetary process.
A system is loosely defined as complex if it is composed of a large number of elements, interacting with each other, and the emergent global dynamics is qualitatively different from the dynamics of each one of the parts. The global dynamics may be either ordered or chaotic and among the most interesting emergent global properties are those of learning and adaptation.Complex systems, in the above sense, appear in many fields ranging from physics and technology to life and social sciences. Research in complex systems involves therefore a wide range of topics, studied in seemingly disparate fields. This calls for some effort to develop general principles and a common language so that tools deve...