You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This collection of essays brings together many of the world's most distinguished statisticians to discuss a wide array of the most important recent developments in data analysis. The book honors John W. Tukey, one of the most influential statisticians of the twentieth century, on the occasion of his eightieth birthday. Contributors, some of them Tukey's former students, use his general theoretical work and his specific contributions to Exploratory Data Analysis as the point of departure for their papers. They cover topics from "pure" data analysis, such as gaussianizing transformations and regression estimates, and from "applied" subjects, such as the best way to rank the abilities of chess ...
To celebrate Peter Huber's 60th birthday in 1994, our university had invited for a festive occasion in the afternoon of Thursday, June 9. The invitation to honour this outstanding personality was followed by about fifty colleagues and former students from, mainly, allover the world. Others, who could not attend, sent their congratulations by mail and e-mail (P. Bickel:" ... It's hard to imagine that Peter turned 60 ... "). After a welcome address by Adalbert Kerber (dean), the following lectures were delivered. Volker Strassen (Konstanz): Almost Sure Primes and Cryptography -an Introduction Frank Hampel (Zurich): On the Philosophical Foundations of Statistics 1 Andreas Buja (Murray Hill): Pr...
None
Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
The intention of this book is to give a picture of the complex material that has been published in the field of social and econornic statistics in Western Europe. Although there are many guides, bibliographies and reference books on special topics of this broad theme, a general overview has been missing. With this book I hope to fill this gap. The frame of reference is a scientific one: enabling and facilitating comparative social research on Western Europe. In some respect this book enlarges and updates the bibliography written by Peter Flora, "Quantitative Historical Sociology", pub lished in "Current Sociology" in 1975. In principle, this guide is an annotated bibli ography of the most im...
This monograph of carefully collected articles reviews recent developments in theoretical and applied statistical science, highlights current noteworthy results and illustrates their applications; and points out possible new directions to pursue. With its enlightening account of statistical discoveries and its numerous figures and tables, Probabili
This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches ...
Robust Regression: Analysis and Applications characterizes robust estimators in terms of how much they weight each observation discusses generalized properties of Lp-estimators. Includes an algorithm for identifying outliers using least absolute value criterion in regression modeling reviews redescending M-estimators studies Li linear regression proposes the best linear unbiased estimators for fixed parameters and random errors in the mixed linear model summarizes known properties of Li estimators for time series analysis examines ordinary least squares, latent root regression, and a robust regression weighting scheme and evaluates results from five different robust ridge regression estimators.
Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.