You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The workshop on "Optical Properties of Low Dimensional Silicon sL Structures" was held in Meylan, France on March, I yd, 1993. The workshop took place inside the facilities of France Telecom- CNET. Around 45 leading scientists working on this rapidly moving field were in attendance. Principal support was provided by the Advanced Research Workshop Program of the North Atlantic Treaty Organisation (NATO). French Delegation a l'Armement and CNET gave also a small financial grant, the organisational part being undertaken by the SEE and CNET. There is currently intense research activity worldwide devoted to the optical properties of low dimensional silicon structures. This follow the recent disco...
In the spirit of Alvin Toffler’s acclaimed works peering into the future of the technological society, Communication Shock is a concise history of communication technologies and an exploration of the possible social and human impacts of nanotechnology on the ecology of human communication. As we become increasingly more networked with communication technologies, we must come to understand and confront the social impact of these changes. More importantly, we must wisely choose in embracing or rejecting these technologies and exploring how we might do both by striking an appropriate balance. Grounded in communication theory and praxis, Communication Shock brings some objectivity to the discu...
This introductory, reference handbook summarizes the terms and definitions, most important phenomena, and regulations discovered in the physics, chemistry, technology, and application of nanostructures. These nanostructures are typically inorganic and organic structures at the atomic scale. Fast progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanotechnology and quantum processing of information, are of strategic importance for the information society of the 21st century. The short form of information taken from textbooks, special encyclopedias, recent original books and papers provides fast support in understanding "old" and new terms of nanoscience an...
A fascinating insight into the state-of-the-art in silicon microphotonics and on what we can expect in the near future. The book presents an overview of the current understanding of getting light from silicon. It concentrates mainly on low dimensional silicon structures, like quantum dots, wires and wells, but covers also alternative approaches like porous silicon and the doping of silicon with rare-earths. The emphasis is on the experimental and theoretical achievements concerning the optoelectronic properties of confined silicon structures obtained during recent years. Silicon based photonic crystals are in particular considered. An in depth discussion of the route towards a silicon laser is presented.
For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.
The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors,
Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Written by leading international researchers in quantum and theoretical chemistry - Highlights important interdisciplinary developments
Photonics is a key technology of this century. The combination of photonics and silicon technology is of great importance because of the potentiality of coupling electronics and optical functions on a single chip. Many experimental and theoretical studies have been performed to understand and design the photonic properties of silicon nanocrystals. Generation of light in silicon is a challenging perspective in the field; however, the issue of light-emitting devices does not limit the activity in the field. Research is also focused on light modulators, optical waveguides and interconnectors, optical amplifiers, detectors, memory elements, photonic crystals, etc. A particularly important task o...
This book is to mark the seventieth birthday of Prof Xie Xide (Hsieh Hsi-Teh), a woman scientist well-known in Surface Science in China. This Festschrift contains contributions from well-known experts who review the progress in surface physics, as well as delve into the latest developments in the frontiers of surface physics research.
This book focuses on nanostructured semiconductors, their fabrication, and their application in various fields such as optics, acoustics, and biomedicine. It presents a compendium of recent developments in nanostructured and hybrid materials and also contains a collection of principles and approaches related to nano-size semiconductors. The text su