You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006
An engaging introduction to the science of vision that offers a coherent account of vision based on general information processing principles In this accessible and engaging introduction to modern vision science, James Stone uses visual illusions to explore how the brain sees the world. Understanding vision, Stone argues, is not simply a question of knowing which neurons respond to particular visual features, but also requires a computational theory of vision. Stone draws together results from David Marr's computational framework, Barlow's efficient coding hypothesis, Bayesian inference, Shannon's information theory, and signal processing to construct a coherent account of vision that explai...
R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulati...
Computational neurosciences and systems biology are among the main domains of life science research where mathematical modeling made a difference. This book introduces the many different types of computational studies one can develop to study neuronal systems. It is aimed at undergraduate students starting their research in computational neurobiology or more senior researchers who would like, or need, to move towards computational approaches. Based on their specific project, the readers would then move to one of the more specialized excellent textbooks available in the field. The first part of the book deals with molecular systems biology. Functional genomics is introduced through examples o...
An important collection showing how computational and mathematical modeling can be used to study the complexities of neural development.
Provides readers with the methods, algorithms, and means to perform text mining tasks This book is devoted to the fundamentals of text mining using Perl, an open-source programming tool that is freely available via the Internet (www.perl.org). It covers mining ideas from several perspectives--statistics, data mining, linguistics, and information retrieval--and provides readers with the means to successfully complete text mining tasks on their own. The book begins with an introduction to regular expressions, a text pattern methodology, and quantitative text summaries, all of which are fundamental tools of analyzing text. Then, it builds upon this foundation to explore: Probability and texts, ...
Providing a step-by-step and practical account of how to model neurons and neural circuitry, this textbook is designed for advanced undergraduate and postgraduate students of computational neuroscience as well as for researchers in neuroscience and related sciences wishing to apply computational approaches to interpret data and make predictions.
This advanced text, first published in 2006, takes a developmental approach to the presentation of our understanding of how vertebrates construct a retina. Written by experts in the field, each of the seventeen chapters covers a specific step in the process, focusing on the underlying molecular, cellular, and physiological mechanisms. There is also a special section on emerging technologies, including genomics, zebrafish genetics, and stem cell biology that are starting to yield important insights into retinal development. Primarily aimed at professionals, both biologists and clinicians working with the retina, this book provides a concise view of vertebrate retinal development. Since the retina is 'an approachable part of the brain', this book will also be attractive to all neuroscientists interested in development, as processes required to build this exquisitely organized system are ultimately relevant to all other parts of the central nervous system.
Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countr...
This volume contains the papers from BIOWIRE 2007, the first in a series of wo- shops on the bio-inspired design of networks, and additional papers contributed from the research area of bio-inspired computing and communication. The workshop took place at the University of Cambridge during April 2–5, 2007 with sponsorship from the US/UK International Technology Alliance in Network and Information Sciences. Its objective was to present, discuss and explore the recent developments in the field of bio-inspired design of networks, with particular regard to wireless networks and the self-organizing properties of biological networks. The workshop was organized by Jon Crowcroft (University of Camb...