Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Beijing Lectures in Harmonic Analysis. (AM-112), Volume 112
  • Language: en
  • Pages: 436

Beijing Lectures in Harmonic Analysis. (AM-112), Volume 112

Based on seven lecture series given by leading experts at a summer school at Peking University, in Beijing, in 1984. this book surveys recent developments in the areas of harmonic analysis most closely related to the theory of singular integrals, real-variable methods, and applications to several complex variables and partial differential equations. The different lecture series are closely interrelated; each contains a substantial amount of background material, as well as new results not previously published. The contributors to the volume are R. R. Coifman and Yves Meyer, Robert Fcfferman, Carlos K. Kenig, Steven G. Krantz, Alexander Nagel, E. M. Stein, and Stephen Wainger.

$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras
  • Language: en
  • Pages: 458

$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras

Volume 2 of two - also available in a set of both volumes.

Harmonic Analysis and Operator Theory
  • Language: en
  • Pages: 528

Harmonic Analysis and Operator Theory

The collection covers a broad spectrum of topics, including: wavelet analysis, Haenkel operators, multimeasure theory, the boundary behavior of the Bergman kernel, interpolation theory, and Cotlar's Lemma on almost orthogonality in the context of L[superscript p] spaces and more...

Orthogonal Polynomials and Special Functions
  • Language: en
  • Pages: 117

Orthogonal Polynomials and Special Functions

  • Type: Book
  • -
  • Published: 1975-01-01
  • -
  • Publisher: SIAM

Originally presented as lectures, the theme of this volume is that one studies orthogonal polynomials and special functions not for their own sake, but to be able to use them to solve problems. The author presents problems suggested by the isometric embedding of projective spaces in other projective spaces, by the desire to construct large classes of univalent functions, by applications to quadrature problems, and theorems on the location of zeros of trigonometric polynomials. There are also applications to combinatorial problems, statistics, and physical problems.

Moufang Sets and Structurable Division Algebras
  • Language: en
  • Pages: 102

Moufang Sets and Structurable Division Algebras

A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group. It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. The authors extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, they show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. The authors also obtain explicit formulas for the root groups, the τ-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups.

Generalized Mercer Kernels and Reproducing Kernel Banach Spaces
  • Language: en
  • Pages: 134

Generalized Mercer Kernels and Reproducing Kernel Banach Spaces

This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1≤p≤∞ .

Recent Developments in Several Complex Variables
  • Language: en
  • Pages: 478

Recent Developments in Several Complex Variables

A classic treatment of complex variables from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.

Topics in Harmonic Analysis and Ergodic Theory
  • Language: en
  • Pages: 242

Topics in Harmonic Analysis and Ergodic Theory

There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. This text presents a series of essays on the topic.

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
  • Language: en
  • Pages: 528

Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday

This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields...

Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory
  • Language: en
  • Pages: 320

Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory

Multiple Dirichlet series are Dirichlet series in several complex variables. A multiple Dirichlet series is said to be perfect if it satisfies a finite group of functional equations and has meromorphic continuation everywhere. The earliest examples came from Mellin transforms of metaplectic Eisenstein series and have been intensively studied over the last twenty years. More recently, many other examples have been discovered and it appears that all the classical theorems on moments of $L$-functions as well as the conjectures (such as those predicted by random matrix theory) can now be obtained via the theory of multiple Dirichlet series. Furthermore, new results, not obtainable by other methods, are just coming to light. This volume offers an account of some of the major research to date and the opportunities for the future. It includes an exposition of the main results in the theory of multiple Dirichlet series, and papers on moments of zeta- and $L$-functions, on new examples of multiple Dirichlet