You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph discusses issues related to estimation, control, and motion planning for mobile robots operating in rough terrain, with particular attention to planetary exploration rovers. Rough terrain robotics is becoming increasingly important in space exploration, and industrial applications. However, most current motion planning and control algorithms are not well suited to rough terrain mobility, since they do not consider the physical characteristics of the rover and its environment. Specific addressed topics are: wheel terrain interaction modeling, including terrain parameter estimation and wheel terrain contact angle estimation; rough terrain motion planning; articulated suspension control; and traction control. Simulation and experimental results are presented that show that the desribed algorithms lead to improved mobility for robotic systems in rough terrain.
Robotics is an exciting field in engineering and natural sciences. Robotics has already made a significant contribution to many industries with the widespread use of industrial robots for tasks such as assembly, welding, painting, and handling materials. In parallel, we have witnessed the emergence of special robots which can undertake assistive jobs, such as search and rescue, de-mining, surveillance, exploration, and security functions. Indeed, the interest in mobile machines, such as climbing and walking robots, has broadened the scope of investigation in robotics. This volume covers broad topics related to mobile machines in general, and climbing and walking robots in particular. Papers from the following keynote speakers are included: Heinz Worn (University of Karlsruhe, Germany), Atsuo Takanishi (University of Waseda, Japan), John Billingsley (University of Southern Queensland, Australia), Bryan Bridge (London South Bank University, UK) and Neville Hogan (Massachusetts Institute of Technology, USA).
Dielectric Elastomers as Electromechanical Transducers provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as "smart or "intelligent, include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologie...
This book provides state-of-the-art scientific and engineering research findings and developments in the area of service robotics and associated support technologies around the theme of human-centric robotics. The book contains peer reviewed articles presented at the CLAWAR 2017 conference. The book contains a strong stream of papers on robotic locomotion strategies and wearable robotics for assistance and rehabilitation. There is also a strong collection of papers on non-destructive inspection, underwater and UAV robotics to meet the growing emerging needs in various sectors of the society. Robot designs based on biological inspirations are also strongly featured.
This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.
ISRR, the "International Symposium on Robotics Research", is one of robotics’ pioneering symposia, which has established some of the field's most fundamental and lasting contributions over the past two decades. This book presents the results of the eleventh edition of "Robotics Research" ISRR03, offering a broad range of topics in robotics. The contributions provide a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope, and define the state of the art of robotics and its future direction.
The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.