You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There is no shortage of books on Commutative Algebra, but the present book is different. Most books are monographs, with extensive coverage. There is one notable exception: Atiyah and Macdonald’s 1969 classic. It is a clear, concise, and efficient textbook, aimed at beginners, with a good selection of topics. So it has remained popular. However, its age and flaws do show. So there is need for an updated and improved version, which the present book aims to be.
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.
This volume resulted from the conference A Celebration of Algebraic Geometry, which was held at Harvard University from August 25-28, 2011, in honor of Joe Harris' 60th birthday. Harris is famous around the world for his lively textbooks and enthusiastic teaching, as well as for his seminal research contributions. The articles are written in this spirit: clear, original, engaging, enlivened by examples, and accessible to young mathematicians. The articles in this volume focus on the moduli space of curves and more general varieties, commutative algebra, invariant theory, enumerative geometry both classical and modern, rationally connected and Fano varieties, Hodge theory and abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, they present a comprehensive view of the long frontier of current knowledge in algebraic geometry. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
1989 marked the 150th anniversary of the birth of the great Danish mathematician Hieronymus George Zeuthen. Zeuthen's name is known to every algebraic geometer because of his discovery of a basic invariant of surfaces. However, he also did fundamental research in intersection theory, enumerative geometry, and the projective geometry of curves and surfaces. Zeuthen's extraordinary devotion to his subject, his characteristic depth, thoroughness, and clarity of thought, and his precise and succinct writing style are truly inspiring. During the past ten years or so, algebraic geometers have reexamined Zeuthen's work, drawing from it inspiration and new directions for development in the field. The 1989 Zeuthen Symposium, held in the summer of 1989 at the Mathematical Institute of the University of Copenhagen, provided a historic opportunity for mathematicians to gather and examine those areas in contemporary mathematical research which have evolved from Zeuthen's fruitful ideas. This volume, containing papers presented during the symposium, as well as others inspired by it, illuminates some currently active areas of research in enumerative algebraic geometry.
Ce. volume. u.t fioJtme de. la Ve. M-ion de6~ve. du .te.x.tu du cOn6Vte.n.cV6 fia-i.tu a N-ice. au cowu., d' un CoUoque. qu-i f.>' Ij u.t .te.n.u du 23 au 27 Ju-in 1981. Comme. Ie. f.>ugge. ILe. Mn ~e., Ie. f.>uje.t, volon.t~e.me.n.t ILU.tfLe.-in.t, gfLav-i.ta-i.t gILof.>f.>o-modo au.toulL du upacu pILoje.c.t-i6f.> de. pe.t-i.te. d-ime.n f.>-ion e.t du co UfLbe.f.>, ce.la f.>UfL un COfLpf.> aigebfL-ique.me.n.t elM. Ii f.>e.mble. que. ce. cho-ix deUbVte a-i.t Ue b-ie.n accu~ danf.> I' e.nf.>e.mble. pM lu pa. Jt:ttupan.tf.>. Le. Colloque. a IL(LMe.mble une. M-ixan.ta-in.e. de. f.>peu~.tu ve.n.uf.> de. d-i66eILe.n.tf.> paljf.> e.t nouf.> noUf.> f.>ommu e.n pa. Jt:ttcuUe.fL ILejo~ de. l'-im pofL.tan.te. pa. Jt:ttc-ipatio n de. nof.> vo~-inf.> -i.taUe.nf.>. Le. pIL06Uf.>e. UfL VIEuVONNE n'aljaYt.t paf.> pu pa. Jt:ttupe.fL au colloque.
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
This volume contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, held at the University of Washington in Seattle in the summer of 1991. Among the topics covered are: algorithms on tree-structured graphs, well-quasi-ordering, logic, infinite graphs, disjoint path problems, surface embeddings, knot theory, graph polynomials, matroid theory, and combinatorial optimization.