You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Taking place at the David L. Lawrence Convention Center, Pittsburgh, Pennsylvania, this CT Volume contains 17 papers from the following 2014 Materials Science and Technology (MS&T'14) symposia: Next Generation Biomaterials Surface Properties of Biomaterials
The field of additive manufacturing has seen explosive growth in recent years due largely in part to renewed interest from the manufacturing sector. Conceptually, additive manufacturing, or industrial 3D printing, is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Today, mo
One of the key challenges current biomaterials researchers face is identifying which of the dizzying number of highly specialized characterization tools can be gainfully applied to different materials and biomedical devices. Since this diverse marketplace of tools and techniques can be used for numerous applications, choosing the proper characterization tool is highly important, saving both time and resources.Characterization of Biomaterials is a detailed and multidisciplinary discussion of the physical, chemical, mechanical, surface, in vitro and in vivo characterization tools and techniques of increasing importance to fundamental biomaterials research.Characterization of Biomaterials will ...
This book contains 18 papers from the Next Generation Biomaterials and Surface Properties of Biomaterials symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Biocompatible Coatings; Drug Delivery and Anti-Microbial Coatings; Ceramic and Metallic Biomaterials; Biomaterials for Tissue Engineering; and Surface Modification.
With contributed papers from the 2011 Materials Science and Technology symposia, this is a useful one-stop resource for understanding the most important issues involved in the processing, properties, and applications of biomaterials science. Logically organized and carefully selected, the articles cover the themes of the symposia: Next Generation Biomaterials: and Surface Properties of Biomaterials. An essential reference for government labs as well as academics in mechanical and chemical engineering, materials and or ceramics, and chemistry.
Materials for Bone Disorders is written by a cross-disciplinary team of research scientists, engineers, and clinicians and bridges the gap between materials science and bone disorders, providing integrated coverage of biomaterials and their applications. The bioceramics, biopolymers, composites, and metallic materials used in the treatment of bone disorders are introduced, as are their interactions with cells, biomolecules, and body tissues. The main types of bone disorder and disease are covered including osteoporosis, spinal injury, load bearing joint diseases, bone cancer, and forms of cranio-maxillofacial disorders. Bone disorders are common across all ages. Various forms of bone disorde...
This CT Volume contains 11 contributed papers from the following 2013 Materials Science and Technology (MS&T'13) symposia: Next Generation Biomaterials Surface Properties of Biomaterials
This volume provides a one-stop resource, compiling current research on bioceramics and porous ceramics. It is a collection of papers from The American Ceramic Society s 32nd International Conference on Advanced Ceramics and Composites, January 27-February 1, 2008. It includes papers from two symposia: "Porous Ceramics: Novel Developments and Applications" and "Next Generation Bioceramics." Articles are logically organized to provide insight into various aspects of bioceramics and porous ceramics. This is a valuable, up-to-date resource for researchers working in ceramics engineering.
This proceedings offers information for those interested in the fundamental aspects of ceramic surface and interfacial phenomenon such as wetting, adhesion, chemical reactivity, and structure-property relationships, and the influence of these factors on the nature of bonding/joining of ceramic materials.
This collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to processing, characterization, mechanical behavior, measurements, failure behavior, and kinetics governing microstructural influences on failure by fracture. Topics include but are not limited to: • Metals and metal-matrix composites • Nano-metal based composites • Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive; nuclear and clean energy; aerospace; failure analysis; biomedical and healthcare; and heavy equipment, machinery, and goods.