You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Time-dependent scheduling involves problems in which the processing times of jobs depend on when those jobs are started. This book is a comprehensive study of complexity results and optimal and suboptimal algorithms concerning time-dependent scheduling in single-, parallel- and dedicated-machine environments. In addition to complexity issues and exact or heuristic algorithms which are typically presented in scheduling books, the author also includes more advanced topics such as matrix methods in time-dependent scheduling, and time-dependent scheduling with two criteria. The reader should be familiar with basic notions of calculus, discrete mathematics and combinatorial optimization theory, while the book offers introductory material on NP-complete problems, and the basics of scheduling theory. The author includes numerous examples, figures and tables, he presents different classes of algorithms using pseudocode, and he completes the book with an extensive bibliography, and author, symbol and subject indexes. The book is suitable for researchers working on scheduling, problem complexity, optimization, heuristics and local search algorithms.
This is a comprehensive study of various time-dependent scheduling problems in single-, parallel- and dedicated-machine environments. In addition to complexity issues and exact or heuristic algorithms which are typically presented in scheduling books, the author also includes more advanced topics such as matrix methods in time-dependent scheduling, time-dependent scheduling with two criteria and time-dependent two-agent scheduling. The reader should be familiar with the basic notions of calculus, discrete mathematics and combinatorial optimization theory, while the book offers introductory material on theory of algorithms, NP-complete problems, and the basics of scheduling theory. The author...
This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.
As supply chain management has matured, maintaining the precise flow of goods to manage schedules (and minimize inventories) on a just-in-time basis still presents major challenges. This has inspired an array of models and algorithms to help ensure the precise flow of components and final products into inventories to meet just-in-time requirements. This is the first survey of the theoretical work on computer systems models and algorithms utilized in just-in-time scheduling.
Scheduling theory has received a growing interest since its origins in the second half of the 20th century. Developed initially for the study of scheduling problems with a single objective, the theory has been recently extended to problems involving multiple criteria. However, this extension has still left a gap between the classical multi-criteria approaches and some real-life problems in which not all jobs contribute to the evaluation of each criterion. In this book, we close this gap by presenting and developing multi-agent scheduling models in which subsets of jobs sharing the same resources are evaluated by different criteria. Several scenarios are introduced, depending on the definition and the intersection structure of the job subsets. Complexity results, approximation schemes, heuristics and exact algorithms are discussed for single-machine and parallel-machine scheduling environments. Definitions and algorithms are illustrated with the help of examples and figures.
This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.
This book constitutes the refereed proceedings of the 16th International Symposium on Algorithms and Computation, ISAAC 2005, held in Sanya, Hainan, China in December 2005. The 112 revised full papers presented were carefully reviewed and selected from 549 submissions. The papers are organized in topical sections on computational geometry, computational optimization, graph drawing and graph algorithms, computational complexity, approximation algorithms, internet algorithms, quantum computing and cryptography, data structure, computational biology, experimental algorithm mehodologies and online algorithms, randomized algorithms, parallel and distributed algorithms.
The Handbook is a comprehensive research reference that is essential for anyone interested in conducting research in supply chain. Unique features include: -A focus on the intersection of quantitative supply chain analysis and E-Business, -Unlike other edited volumes in the supply chain area, this is a handbook rather than a collection of research papers. Each chapter was written by one or more leading researchers in the area. These authors were invited on the basis of their scholarly expertise and unique insights in a particular sub-area, -As much attention is given to looking back as to looking forward. Most chapters discuss at length future research needs and research directions from both theoretical and practical perspectives, -Most chapters describe in detail the quantitative models used for analysis and the theoretical underpinnings; many examples and case studies are provided to demonstrate how the models and the theoretical insights are relevant to real situations, -Coverage of most state-of-the-art business practices in supply chain management.
Traditionally, the three most important manufacturing functions are process planning, scheduling, and due-date assignment, which are handled sequentially and separately.This book integrates these manufacturing processes and functions to increase global performance along with manufacturing and production cost savings. Integrated Process Planning, Scheduling, and Due-Date Assignment combines the most important manufacturing functions to use manufacturing resources better, reduce production costs, and eliminate bottlenecks with increased production efficiency. The book covers how the integration will help eliminate scheduling conflicts and how to adapt to irregular shop floor disturbances. It also explains how other elements, such as tardiness and earliness, are penalized and how prioritizing helps improve weight performance function. This book will draw the interest of professionals, students, and academicians in process planning, scheduling, and due-date assignment. It could also be supplemental material for manufacturing courses in industrial engineering and manufacturing engineering departments.
Researchers in management, industrial engineering, operations, and computer science have intensely studied scheduling for more than 50 years, resulting in an astounding body of knowledge in this field. Handbook of Scheduling: Algorithms, Models, and Performance Analysis, the first handbook on scheduling, provides full coverage of the most recent and advanced topics on the subject. It assembles researchers from all relevant disciplines in order to facilitate cross-fertilization and create new scheduling insights. The book comprises six major parts, each of which breaks down into smaller chapters: · Part I introduces materials and notation, with tutorials on complexity theory and algorithms f...