Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Eulerian Numbers
  • Language: en
  • Pages: 463

Eulerian Numbers

  • Type: Book
  • -
  • Published: 2015-10-12
  • -
  • Publisher: Birkhäuser

This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatoric...

Inquiry-Based Enumerative Combinatorics
  • Language: en
  • Pages: 244

Inquiry-Based Enumerative Combinatorics

  • Type: Book
  • -
  • Published: 2019-06-28
  • -
  • Publisher: Springer

This textbook offers the opportunity to create a uniquely engaging combinatorics classroom by embracing Inquiry-Based Learning (IBL) techniques. Readers are provided with a carefully chosen progression of theorems to prove and problems to actively solve. Students will feel a sense of accomplishment as their collective inquiry traces a path from the basics to important generating function techniques. Beginning with an exploration of permutations and combinations that culminates in the Binomial Theorem, the text goes on to guide the study of ordinary and exponential generating functions. These tools underpin the in-depth study of Eulerian, Catalan, and Narayana numbers that follows, and a sele...

Network Coding and Subspace Designs
  • Language: en
  • Pages: 443

Network Coding and Subspace Designs

  • Type: Book
  • -
  • Published: 2018-01-29
  • -
  • Publisher: Springer

This book, written by experts from universities and major research laboratories, addresses the hot topic of network coding, a powerful scheme for information transmission in networks that yields near-optimal throughput. It introduces readers to this striking new approach to network coding, in which the network is not simply viewed as a mechanism for delivering packets, but rather an algebraic structure named the subspace, which these packets span. This leads to a new kind of coding theory, employing what are called subspace codes. The book presents selected, highly relevant advanced research output on: Subspace Codes and Rank Metric Codes; Finite Geometries and Subspace Designs; Application ...

Stochastic Processes and Functional Analysis
  • Language: en
  • Pages: 286

Stochastic Processes and Functional Analysis

This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.

Recent Trends in Algebraic Combinatorics
  • Language: en
  • Pages: 364

Recent Trends in Algebraic Combinatorics

  • Type: Book
  • -
  • Published: 2019-01-21
  • -
  • Publisher: Springer

This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial o...

Geometric and Cohomological Group Theory
  • Language: en
  • Pages: 277

Geometric and Cohomological Group Theory

Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.

Polytopes and Discrete Geometry
  • Language: en
  • Pages: 286

Polytopes and Discrete Geometry

The papers showcase the breadth of discrete geometry through many new methods and results in a variety of topics. Also included are survey articles on some important areas of active research. This volume is aimed at researchers in discrete and convex geometry and researchers who work with abstract polytopes or string C C-groups. It is also aimed at early career mathematicians, including graduate students and postdoctoral fellows, to give them a glimpse of the variety and beauty of these research areas. Topics covered in this volume include: the combinatorics, geometry, and symmetries of convex polytopes; tilings; discrete point sets; the combinatorics of Eulerian posets and interval posets; symmetries of surfaces and maps on surfaces; self-dual polytopes; string C C-groups; hypertopes; and graph coloring.

Lattice Theory: Special Topics and Applications
  • Language: en
  • Pages: 625

Lattice Theory: Special Topics and Applications

  • Type: Book
  • -
  • Published: 2016-10-08
  • -
  • Publisher: Birkhäuser

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.

Exercises in (Mathematical) Style
  • Language: en
  • Pages: 289

Exercises in (Mathematical) Style

Hover over the image to zoom. Click the image for a popup.Email a Friend About This ItemLogin to Submit a Review inShare John McCleary In Exercises in (Mathematical) Style, the author investigates the world of that familiar set of numbers, the binomial coefficients. While the reader learns some of the properties, relations, and generalizations of the numbers of Pascal's triangle, each story explores a different mode of discourse - from arguing algebraically, combinatorially, geometrically, or by induction, contradiction, or recursion to discovering mathematical facts in poems, music, letters, and various styles of stories. The author follows the example of Raymond Queneau's Exercises in Style, giving the reader 99 stories in various styles. The ubiquitous nature of binomial coefficients leads the tour through combinatorics, number theory, algebra, analysis, and even topology. The book celebrates the joy of writing and the joy of mathematics, found by engaging the rich properties of this simple set of numbers.

Combinatorics of Permutations
  • Language: en
  • Pages: 748

Combinatorics of Permutations

  • Type: Book
  • -
  • Published: 2022-05-09
  • -
  • Publisher: CRC Press

A CHOICE "Outstanding Academic Title," the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, third edition continues to clearly show the usefulness of this subject for both students and researchers. The research in combinatorics of permutations has advanced rapidly since this book was published in a first edition. Now the third edition offers not only updated results, it remains the leading textbook for a course on the topic. Coverage is mostly enumerative, but there are algebraic, analytic, and topological parts as well, and applications. Since the...