You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. 1 We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman’s words ring as true as they did a half-century ago. The goal set out in the Truman Administration of maintaining leadership in science has remained the policy of the U.S. Government to this day: Dr. John Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the President made remarks to that effect during his confirmation hearings in October 2 2001.
The world needs clean and renewable energy and hydrogen represents an almost ideal resource. Hydrogen is the simplest and most abundant molecule in the universe, yet one that is a challenge to produce from renewable resources. Biohydrogen, or hydrogen produced from renewable resources such as water or organic wastes by biological means, is a goal worthy of increased global attention and resources. The purpose of BioHydrogen '97 was to bring together leaders in the biological p- duction of hydrogen from the United States, Japan, Europe, and elsewhere to exchange scientific and technical information and catalyze further cooperative programs. Parti- pants came from at least different countries ...
This book addresses the biologically controlled synthesis of magnetic materials, and its applications in bio-inspired design and synthesis. It highlights several key aspects of biologically produced magnetic materials – (i) organisms that biologically synthesize and utilize magnetic materials; (ii) formation mechanisms; (iii) how these biological formation routes yield various phases and morphologies; and (iv) the resultant magnetic and structural properties – and describes diverse bio-inspired approaches to utilizing magnetic materials in applications ranging from semiconductor to health industries. In addition, the book discusses the recent industrial use of magnetic materials to develop scalable technologies that encompass protein displays, drug-delivery, biophysical separations, and medical diagnostics, as well as outlining future next-generation applications. As such, it offers valuable insights for all scientists interested in using multidisciplinary fields to overcome current obstacles, and in gaining multifaceted expertise in magnetic materials bionanotechnology.
The International Symposium on Biological Effects of Magnetic and Electrom- netic Fields was held from September 3-4, 1993 at Kyushu University in Fukuoka . Japan . Originally, it was only intended to be an informal gathering of many scientists who had accepted my invitation to visit Kyushu University after the XXIVth General Assembly of the International Union of Radio Science (URSI), held in Kyoto prior to our symposium . However, since so many distinguished scientists were able to come, it was decided that a more formal symposium would be possible . It was a very productive symposium and, as a result, many of the guests consented that it would be a good idea to gather all the information ...
This book was written with several objectives in mind: 1. To share with as many scientists and engineers as possible the intriguing scientific aspects of ultra-fine particles (UFPs) and to show their potential as new materials. 2. Entice such researchers to participate in the development of this emerging field. 3. To publicize the achievements of the Ultra-Fine Particle Project, which was carried out under the auspices of the Exploratory Research for Advanced Technology program (ERATO). In addition to the members of the Ultra-Fine Particle Project, contributions from other pioneers in this field are included. To achieve the first objective described above, the uniformity of the contents and focus on a single central theme have been sacrificed somewhat to provide a broad coverage. It is expected that the reader can discover an appropriate topic for further development of new materials and basic technology by reading selected sections of this book. Alternately, one may gain an overview of this new field by reviewing the entire book, which can potentially lead to new directions in the development of UFPs.
None
This Springer Handbook provides, for the first time, a complete and consistent overview over the methods, applications, and products in the field of marine biotechnology. A large portion of the surface of the earth (ca. 70%) is covered by the oceans. More than 80% of the living organisms on the earth are found in aquatic ecosystems. The aquatic systems thus constitute a rich reservoir for various chemical materials and (bio-)chemical processes. Edited by a renowned expert with a longstanding experience, and including over 60 contributions from leading international scientists, the Springer Handbook of Marine Biotechnology is a major authoritative desk reference for everyone interested or wor...
Koki Horikoshi — discoverer of the alkaliphiles, microbes that thrive in alkaline environments — describes in his autobiography how the research on extremophiles started and developed. He is a pioneer in the study of these microorganisms that thrive in extreme conditions, and in his book he opens a new vista of the microbial world, pushing the field to expand from the surface of the Earth to the subsurface, to the deep sea and outer space. All major developments in extremophiles research are covered, stretching back to the historical use of microbes in mixed fermentation, indigo dyeing and the pasteurisation of sake. Events in Horikoshi’s life provide many valuable insights into the li...