You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers a relatively self-contained presentation of the fundamental results in categorical data analysis, which plays a central role among the statistical techniques applied in the social, political and behavioral sciences, as well as in marketing and medical and biological research. The methods applied are mainly aimed at understanding the structure of associations among variables and the effects of other variables on these interactions. A great advantage of studying categorical data analysis is that many concepts in statistics become transparent when discussed in a categorical data context, and, in many places, the book takes this opportunity to comment on general principles and m...
"This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines." —CHOICE Providing cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of various backgrounds can use the reference either as a primer for understanding basic probability theory or as a more advanced research t...
Probability Theory: A Primer intends to give a non-technical introduction to probability theory, as it is used in the social sciences. The topics covered include the concept of probability and its relation to relative frequency, the properties of probability, discrete and continuous random variables, and binomial, uniform, normal and chi-squared distributions. Readers who have taken basic college mathematics will be comfortable with this work, which frequently draws intuition and examples instead of technically involved arguments to make its points. In spite of the elementary level of discussion, the concepts of continuous random variables and distributions are carefully developed. Thus, the book prepares the reader not only for a precise understanding of sampling theory, where discrete probabilities are used, but also to a deeper understanding of most of the statistical techniques applied in social science data analysis.
This book continues the mission of the previous text by the author, Lectures on Categorical Data Analysis, by expanding on the introductory concepts from that volume and providing a mathematically rigorous presentation of advanced topics and current research in statistical techniques which can be applied in the social, political, behavioral, and life sciences. It presents an intuitive and unified discussion of an array of themes in categorical data analysis, and the emphasis on structure over stochastics renders many of the methods applicable in machine learning environments and for the analysis of big data. The book focuses on graphical models, their application in causal analysis, the analytical properties of parameterizations of multivariate discrete distributions, marginal models, and coordinate-free relational models. To guide the readers in future research, the volume provides references to original papers and also offers detailed proofs of most of the significant results. Like the previous volume, it features exercises and research questions, making it appropriate for graduate students, as well as for active researchers.
This volume is a collection of papers presented at a conference held in Shoresh Holiday Resort near Jerusalem, Israel, in December 2000 organized by the Israeli Ministry of Science, Culture and Sport. The theme of the conference was "Foundation of Statistical Inference: Applications in the Medical and Social Sciences and in Industry and the Interface of Computer Sciences". The following is a quotation from the Program and Abstract booklet of the conference. "Over the past several decades, the field of statistics has seen tremendous growth and development in theory and methodology. At the same time, the advent of computers has facilitated the use of modern statistics in all branches of scienc...
The primary goal of this book is to present to the scientific and management communities a selection of applications using recent Soft Computing (SC) and Computing with Words and Perceptions (CWP) models and techniques meant to solve some economics and financial problems that are of utmost importance. The book starts with a coverage of data mining tools and techniques that may be of use and significance for economic and financial analyses and applications. Notably, fuzzy and natural language based approaches and solutions for a more human consistent dealing with decision support, time series analysis, forecasting, clustering, etc. are discussed. The second part deals with various decision making models, particularly under probabilistic and fuzzy uncertainty, and their applications in solving a wide array of problems including portfolio optimization, option pricing, financial engineering, risk analysis etc. The selected examples could also serve as a starting point or as an opening out, in the SC and CWP techniques application to a wider range of problems in economics and finance.
Dotyczy m. in. Polski.
Some arrangements and structures of permanent magnets are hypothesized to exert measurable physiological and pathological effects on living tissues when exposed to the resultant electromagnetic field. From Microbe to Man: Biological responses to artificial static magnetic field-exposure explores the effects of such arrangements based on this hypothesis. The book begins with an explanation of the mechanisms of artificial static magnetic fields (SMFs). This is followed by sequential sections presenting the effects of SMF exposure on living organisms backed by thorough experimental studies (on microbial, animal and human trials). In conclusion, the work reveals the positive nature of SMF treatm...
Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, multivariate statistics, or applied graph theory; but by skipping the proofs, the algorithms can also be used by specialists w...