You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The authoritative guide to the effective design and production of reliable technology products, revised and updated While most manufacturers have mastered the process of producing quality products, product reliability, software quality and software security has lagged behind. The revised second edition of Improving Product Reliability and Software Quality offers a comprehensive and detailed guide to implementing a hardware reliability and software quality process for technology products. The authors – noted experts in the field – provide useful tools, forms and spreadsheets for executing an effective product reliability and software quality development process and explore proven software...
SOFTWARE RELIABILITY TECHNIQUES FOR REAL-WORLD APPLICATIONS SOFTWARE RELIABILITY TECHNIQUES FOR REAL-WORLD APPLICATIONS Authoritative resource providing step-by-step guidance for producing reliable software to be tailored for specific projects Software Reliability Techniques for Real-World Applications is a practical, up to date, go-to source that can be referenced repeatedly to efficiently prevent software defects, find and correct defects if they occur, and create a higher level of confidence in software products. From content development to software support and maintenance, the author creates a depiction of each phase in a project such as design and coding, operation and maintenance, mana...
RELIABILITY PREDICTION FOR MICROELECTRONICS Wiley Series in Quality & Reliability Engineering REVOLUTIONIZE YOUR APPROACH TO RELIABILITY ASSESSMENT WITH THIS GROUNDBREAKING BOOK Reliability evaluation is a critical aspect of engineering, without which safe performance within desired parameters over the lifespan of machines cannot be guaranteed. With microelectronics in particular, the challenges to evaluating reliability are considerable, and statistical methods for creating microelectronic reliability standards are complex. With nano-scale microelectronic devices increasingly prominent in modern life, it has never been more important to understand the tools available to evaluate reliability...
This book offers a comprehensive overview of recently developed methods for assessing and optimizing system reliability. It consists of two main parts, for treating assessment methods and optimization methods, respectively. The first part covers methods of multi-state system reliability modelling and evaluation, Markov processes, Monte Carlo simulation and uncertainty analysis. The methods considered range from piecewise-deterministic Markov processes to belief function analysis. The second part covers optimization methods of mathematical programming and evolutionary algorithms, and problems of multi-objective optimization and optimization under uncertainty. The methods of this part range from non-dominated sorting genetic algorithm to robust optimization. The book also includes the application of the assessment and optimization methods considered on real case studies, particularly with respect to the reliability assessment and optimization of renewable energy systems, and bridges the gap between theoretical method development and engineering practice.
NEXT GENERATION HALT AND HASS ROBUST DESIGN OF ELECTRONICS AND SYSTEMS A NEW APPROACH TO DISCOVERING AND CORRECTING SYSTEMS RELIABILITY RISKS Next Generation HALT and HASS presents a major paradigm shift from reliability prediction-based methods to discovery of electronic systems reliability risks. This is achieved by integrating highly accelerated life test (HALT) and highly accelerated stress screen (HASS) into a physics of failure based robust product and process development methodology. The new methodologies challenge misleading and sometimes costly misapplication of probabilistic failure prediction methods (FPM) and provide a new deterministic map for reliability development. The author...
A comprehensively updated and reorganized new edition. The updates include comparative methods for improving reliability; methods for optimal allocation of limited resources to achieve a maximum risk reduction; methods for improving reliability at no extra cost and building reliability networks for engineering systems. Includes: A unique set of 46 generic principles for reducing technical risk Monte Carlo simulation algorithms for improving reliability and reducing risk Methods for setting reliability requirements based on the cost of failure New reliability measures based on a minimal separation of random events on a time interval Overstress reliability integral for determining the time to failure caused by overstress failure modes A powerful equation for determining the probability of failure controlled by defects in loaded components with complex shape Comparative methods for improving reliability which do not require reliability data Optimal allocation of limited resources to achieve a maximum risk reduction Improving system reliability based solely on a permutation of interchangeable components
A comprehensive guide to the application and processing of condition-based data to produce prognostic estimates of functional health and life. Prognostics and Health Management provides an authoritative guide for an understanding of the rationale and methodologies of a practical approach for improving system reliability using conditioned-based data (CBD) to the monitoring and management of health of systems. This proven approach uses electronic signatures extracted from conditioned-based electrical signals, including those representing physical components, and employs processing methods that include data fusion and transformation, domain transformation, and normalization, canonicalization an...
Outlines the correct procedures for doing FMEAs and how to successfully apply them in design, development, manufacturing, and service applications There are a myriad of quality and reliability tools available to corporations worldwide, but the one that shows up consistently in company after company is Failure Mode and Effects Analysis (FMEA). Effective FMEAs takes the best practices from hundreds of companies and thousands of FMEA applications and presents streamlined procedures for veteran FMEA practitioners, novices, and everyone in between. Written from an applications viewpoint—with many examples, detailed case studies, study problems, and tips included—the book covers the most commo...
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated test...
Demonstrates how to solve reliability problems using practical applications of Bayesian models This self-contained reference provides fundamental knowledge of Bayesian reliability and utilizes numerous examples to show how Bayesian models can solve real life reliability problems. It teaches engineers and scientists exactly what Bayesian analysis is, what its benefits are, and how they can apply the methods to solve their own problems. To help readers get started quickly, the book presents many Bayesian models that use JAGS and which require fewer than 10 lines of command. It also offers a number of short R scripts consisting of simple functions to help them become familiar with R coding. Pra...