You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Publisher description
This third volume of four finishes the program begun in Volume 1 by describing all the most important techniques, mainly based on Gröbner bases, which allow one to manipulate the roots of the equation rather than just compute them. The book begins with the 'standard' solutions (Gianni–Kalkbrener Theorem, Stetter Algorithm, Cardinal–Mourrain result) and then moves on to more innovative methods (Lazard triangular sets, Rouillier's Rational Univariate Representation, the TERA Kronecker package). The author also looks at classical results, such as Macaulay's Matrix, and provides a historical survey of elimination, from Bézout to Cayley. This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the 'bible of computer algebra', gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
After historical introduction, the aspiration technique and imaging modalities are described. Thereafter, the use of aspiration cytology in the diagnosis and mainly in the sta- ging of urologic cancers is on still not well known appli- cations of the procedure in the staging of some organs (bladder, adrenals, penis, testis and secondary ureteral strictures) are reported.
This volume consists of contributions by participants and speakers at two conferences. The first was entitled Combinatorial Group Theory, Discrete Groups and Number Theory and was held at Fairfield University, December 8-9, 2004. It was in honor of Professor Gerhard Rosenberger's sixtieth birthday. The second was the AMS Special Session on Infinite Group Theory held at Bard College, October 8-9, 2005. The papers in this volume provide a very interesting mix of combinatorial group theory, discrete group theory and ring theory as well as contributions to noncommutative algebraic cryptography.
"The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH
Symbolic rewriting techniques are methods for deriving consequences from systems of equations, and are of great use when investigating the structure of the solutions. Such techniques appear in many important areas of research within computer algebra: • the Knuth-Bendix completion for groups, monoids and general term-rewriting systems, • the Buchberger algorithm for Gröbner bases, • the Ritt-Wu characteristic set method for ordinary differential equations, and • the Riquier-Janet method for partial differential equations. This volume contains invited and contributed papers to the Symbolic Rewriting Techniques workshop, which was held at the Centro Stefano Franscini in Ascona, Switzerland, from April 30 to May 4, 1995. That workshop brought together 40 researchers from various areas of rewriting techniques, the main goal being the investigation of common threads and methods. Following the workshops, each contribution was formally refereed and 14 papers were selected for publication.
Since its very existence as a separate field within computer science, computer graphics had to make extensive use of non-trivial mathematics, for example, projective geometry, solid modelling, and approximation theory. This interplay of mathematics and computer science is exciting, but also makes it difficult for students and researchers to assimilate or maintain a view of the necessary mathematics. The possibilities offered by an interdisciplinary approach are still not fully utilized. This book gives a selection of contributions to a workshop held near Genoa, Italy, in October 1991, where a group of mathematicians and computer scientists gathered to explore ways of extending the cooperation between mathematics and computer graphics.
This volume is composed of six contributions derived from the lectures given during the UIMP-RSME Lluis Santalo Summer School on ``Recent Advances in Real Complexity and Computation'', held July 16-20, 2012, in Santander, Spain. The goal of this Summer School was to present some of the recent advances on Smale's 17th Problem: ``Can a zero of $n$ complex polynomial equations in $n$ unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?'' These papers cover several aspects of this problem: from numerical to symbolic methods in polynomial equation solving, computational complexity aspects (both worse and average cases and both upper and lower complexity bounds) as well as aspects of the underlying geometry of the problem. Some of the contributions also deal with either real or multiple solutions solving.