You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is imp...
This book constitutes the refereed proceedings of the First International Workshop on Data Integration in the Life Sciences, DILS 2004, held in Leipzig, Germany, in March 2004. The 13 revised full papers and 2 revised short papers presented were carefully reviewed and selected from many submissions. The papers are organized in topical sections on scientific and clinical workflows, ontologies and taxonomies, indexing and clustering, integration tools and systems, and integration techniques.
Collecting scattered knowledge into one coherent account, this book provides a compendium of both classical and recently developed results on reversible computing. It offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. It explores up-and-coming theories, techniques, and tools for the application of reversible computing. The topics covered span several areas of computer science, including high-performance computing, parallel/distributed systems, computational theory, compilers, power-aware computing, and supercomputing.
This set compiles more than 240 chapters from the world's leading experts to provide a foundational body of research to drive further evolution and innovation of these next-generation technologies and their applications, of which scientific, technological, and commercial communities have only begun to scratch the surface.
Data integration in the life sciences continues to be important but challe- ing. The ongoing development of new experimental methods gives rise to an increasingly wide range of data sets, which in turn must be combined to allow more integrative views of biological systems. Indeed, the growing prominence of systems biology, where mathematical models characterize behaviors observed in experiments of di?erent types, emphasizes the importance of data integration to the life sciences. In this context, the representation of models of biological behavior as data in turn gives rise to challenges relating to provenance, data quality, annotation, etc., all of which are associated with signi?cant research activities within computer science. The Data Integration in the Life Sciences (DILS) Workshop Series brings together data and knowledge management researchers from the computer s- ence research community with bioinformaticians and computational biologists, to improve the understanding of how emerging data integration techniques can address requirements identi?ed in the life sciences.
Introduction to Computational Modeling Using C and Open-Source Tools presents the fundamental principles of computational models from a computer science perspective. It explains how to implement these models using the C programming language. The software tools used in the book include the Gnu Scientific Library (GSL), which is a free software library of C functions, and the versatile, open-source GnuPlot for visualizing the data. All source files, shell scripts, and additional notes are located at science.kennesaw.edu/~jgarrido/comp_models The book first presents an overview of problem solving and the introductory concepts, principles, and development of computational models before covering ...
Creating scientific workflow applications is a very challenging task due to the complexity of the distributed computing environments involved, the complex control and data flow requirements of scientific applications, and the lack of high-level languages and tools support. Particularly, sophisticated expertise in distributed computing is commonly required to determine the software entities to perform computations of workflow tasks, the computers on which workflow tasks are to be executed, the actual execution order of workflow tasks, and the data transfer between them. Qin and Fahringer present a novel workflow language called Abstract Workflow Description Language (AWDL) and the correspondi...
None
This fully revised and updated second edition of Understanding Digital Libraries focuses on the challenges faced by both librarians and computer scientists in a field that has been dramatically altered by the growth of the Web. At every turn, the goal is practical: to show you how things you might need to do are already being done, or how they can be done. The first part of the book is devoted to technology and examines issues such as varying media requirements, indexing and classification, networks and distribution, and presentation. The second part of the book is concerned with the human contexts in which digital libraries function. Here you'll find specific and useful information on usabi...
Dealing with the volume, complexity, and diversity of data currently being generated by scientific experiments and simulations often causes scientists to waste productive time. Scientific Data Management: Challenges, Technology, and Deployment describes cutting-edge technologies and solutions for managing and analyzing vast amounts of data, helping