You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book features recent research in mathematical modeling of indirectly and directly transmitted infectious diseases in humans, animals, and plants. It compiles nine not previously published studies that illustrate the dynamic spread of infectious diseases, offering a broad range of models to enrich understanding. It demonstrates the capability of mathematical modeling to capture disease spread and interaction dynamics as well as the complicating factors of various evolutionary processes. In addition, it presents applications to real-world disease control by commenting on key parameters and dominant pathways related to transmission. While aimed at early-graduate level students, the book can also provide insights to established researchers in that it presents a survey of current topics and methodologies in a constantly evolving field.
This volume is dedicated to the memory of Professor Stavros Busenberg of Harvey Mudd College, who contributed so greatly to this field during 25 years prior to his untimely death. It contains about 60 invited papers by leading researchers in the areas of dynamical systems, mathematical studies in ecology, epidemics, and physiology, and industrial mathematics. Anyone interested in these areas will find much of value in these contributions.
Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the...
The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is de...
Food webs hold a central place in ecology. They describe which organisms feed on which others in natural habitats. This book describes recently discovered empirical regularities in real food webs: it proposes a novel theory unifying many of these regularities, as well as extensive empirical data. After a general introduction, reviewing the empirical and theoretical discoveries about food webs, the second portion of the book shows that community food webs obey several striking phenomenological regularities. Some of these unify, regardless of habitat. Others differentiate, showing that habitat significantly influences structure. The third portion of the book presents a theoretical analysis of ...
Given the importance of interdisciplinary work in sustainability, Simulation of Ecological and Environmental Models introduces the theory and practice of modeling and simulation as applied in a variety of disciplines that deal with earth systems, the environment, ecology, and human-nature interactions. Based on the author's many years of teaching g
This series aims at reporting new developments of a high mathematical standard and of current interest. Each volume in the series shall be devoted to mathematical analysis that has been applied, or potentially applicable to the solutions of scientific, engineering, and social problems. The first volume of WSSIAA contains 42 research articles on differential equations by leading mathematicians from all over the world. This volume has been dedicated to V Lakshmikantham on his 65th birthday for his significant contributions in the field of differential equations.
The Dynamic Energy Budget theory unifies the commonalities between organisms and links different levels of biological organisation.