You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 25th RoboCup International Symposium which was held online during July 2022 in Bangkok, Thailand. The 28 full papers included in these proceedings were carefully reviewed and selected from 40 submissions; the volume includes 12 papers from the winners of the RoboCup 2022 competitions under the Champions Track. The RoboCup International Symposium focuses on the science behind the advances in robotics, including the key innovations that led the winning teams to their success, and the outcomes of research inspired by challenges across the different leagues at RoboCup.
Nonlinear Approaches in Engineering Applications 2 focuses on the application of nonlinear approaches to different engineering and science problems. The selection of the topics for this book is based on the best papers presented in the ASME 2010 and 2011 in the tracks of Dynamic Systems and Control, Optimal Approaches in Nonlinear Dynamics and Acoustics, both of which were organized by the editors. For each selected topic, detailed concept development, derivations and relevant knowledge are provided for the convenience of the readers. The topics that have been selected are of great interest in the fields of engineering and physics and this book is designed to appeal to engineers and researchers working in a broad range of practical topics and approaches.
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.
This book includes the post-conference proceedings of the 23rd RoboCup International Symposium, held in Sydney, NSW, Australia, in July 2019. The 38 full revised papers and 14 invited papers presented in this book were carefully reviewed and selected from 74 submissions. This book highlights the approaches of champion teams from the competitions and documents the proceedings of the 23rd annual RoboCup International Symposium. Due to the complex research challenges set by the RoboCup initiative, the RoboCup International Symposium offers a unique perspective for exploring scientific and engineering principles underlying advanced robotic and AI systems.
The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area.
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the m...
This book focuses on the latest applications of nonlinear approaches in different disciplines of engineering and to a range of scientific problems. For each selected topic, detailed concept development, derivations and relevant knowledge are provided for the convenience of the readers. The topics range from dynamic systems and control to optimal approaches in nonlinear dynamics. The volume further includes invited chapters from world class experts in the field. The selected topics are of great interest in the fields of engineering and physics and this book is ideal for engineers and researchers working in a broad range of practical topics and approaches.
Constrained motion is of paramount importance in the design and analysis of mechanical systems and central to the study of analytical dynamics. The problem of constrained motion was first posed over two hundred years ago, and it has been worked on vigorously ever since. This book offers a fresh approach to the subject. Eminently readable, it is written as an introduction to analytical dynamics, with emphasis on fundamental concepts in mechanics. The connection between generalized inverses of matrices and constrained motion is a central theme. The book begins with a description of the motion of a particle subjected to holonomic and nonholonomic constraints and presents explicit equations of motion. Examples are provided throughout the book, and carefully formulated problems at the end of each chapter reinforce the material covered. This computationally appealing approach will be useful to students in engineering and the applied sciences.