You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Already Einstein could never see quantum mechanics as a complete theory. Nowadays, many researchers, including 't Hooft, view quantum mechanics as a statistical description of some underlying reality. The workshop Beyond the Quantum, organized in Spring 2006 at the Lorentz Center in Leiden, The Netherlands, was one of the first meetings completely devoted to physics that may need an explanation beyond quantum mechanics. A broad variety of subjects was covered. The present book reflects this. Sample Chapter(s). Chapter 1: The Mathematical Basis for Deterministic Quantum Mechanics (267 KB). Contents: Introductions: The Mathematical Basis for Deterministic Quantum Mechanics (G 't Hooft); What D...
The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics.On the one hand it included lectures on quantum information, quantum open systems, quantum transport and quantum solid state. On the other hand it included lectures on quantum measurement, models for elementary particles, sub-quantum structures and aspects on the philosophy and principles of quantum physics.The special program of this school offered a broad outlook on the current and near future fundamental research in theoretical physics.The lectures are at the level of PhD students.
In the past thirty years, the area of spin glasses has experienced rapid growth, including the development of solvable models for glassy systems. Yet these developments have only been recorded in the original research papers, rather than in a single source. Thermodynamics of the Glassy State presents a comprehensive account of the modern theory of glasses, starting from basic principles (thermodynamics) to the experimental analysis of one of the most important consequences of thermodynamics-Maxwell relations. After a brief introduction to general theoretical concepts and historical developments, the book thoroughly describes glassy phenomenology and the established theory. The core of the bo...
"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
One of the Top Selling Physics Books according to YBP Library ServicesOrder can be found in all the structures unfolding around us at different scales, including in the arrangements of matter and in energy flow patterns. Aperiodic Structures in Condensed Matter: Fundamentals and Applications focuses on a special kind of order referred to as aperiod
In this largely nontechnical book, eminent physicists and philosophers address the philosophical impact of recent advances in quantum physics. These are shown to shed new light on profound questions about realism, determinism, causality or locality. The participants contribute in the spirit of an open and honest discussion, reminiscent of the time when science and philosophy were inseparable. After the editors’ introduction, the next chapter reveals the strangeness of quantum mechanics and the subsequent discussions examine our notion of reality. The spotlight is then turned to the topic of decoherence. Bohm’s theory is critically examined in two chapters, and the relational interpretati...
The quantum theory is the first theoretical approach that helps one to successfully understand the atomic and sub-atomic worlds which are too far from the cognition based on the common intuition or the experience of the daily-life. This is a very coherent theory in which a good system of hypotheses and appropriate mathematical methods allow one to describe exactly the dynamics of the quantum systems whose measurements are systematically affected by objective uncertainties. Thanks to the quantum theory we are able now to use and control new quantum devices and technologies in quantum optics and lasers, quantum electronics and quantum computing or in the modern field of nano-technologies.
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mech...