You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Anaerobic sewage treatment using UASB reactors has significantly expanded in the last few decades and is now a consolidated technology in some warm climate regions. Several advantages of the anaerobic process make it a more sustainable option for sewage treatment. However, there are still important constraints related to design, construction, and operation of UASB reactors. Conversely, there is enough knowledge, experience, and proven technology that can be used to effectively tackle all the related drawbacks. This book delivers the most relevant techno-scientific developments from academia and water authorities, comprehensively addressing the main aspects of interest in design, construction...
Sustainability is now a widely spread concept, and much progress has been achieved since the 1970s, when it started to be widely discussed. At present, many international organizations and scientists are active in implementing sustainable development as a whole and the UN Sustainable Development Goals (SDGs) in particular. Nevertheless, the main research agenda is being led by some countries, providing a good opportunity for other nations and regions which have not yet been so active, to bring their viewpoints to the global discussion. One of these regions is Latin America. Consistent with the need for more cross-sectorial and cross-cultural interactions among the various stakeholders workin...
Anaerobic Reactors is the forth volume in the series Biological Wastewater Treatment. The fundamentals of anaerobic treatment are presented in detail, including its applicability, microbiology, biochemistry and main reactor configurations. Two reactor types are analysed in more detail, namely anaerobic filters and especially UASB (upflow anaerobic sludge blanket) reactors. Particular attention is also devoted to the post-treatment of the effluents from the anaerobic reactors. The book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines for anaerobic reac...
Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are "good" in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are "bad" when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathemat...
Ever increasing amounts of solid waste and dwindling space for disposal is a problem reaching crisis level in many of the world's largest urban areas. Incineration as an alternative to landfill has come under scrutiny, though the capital and operating costs generally exceed those associated with landfill. This report provides background information for the "Decision-maker' guide to municipal solid waste (MSW) incineration". Key criteria for a solid waste incineration scheme are identified, and the report gives decision makers information on how to investigate and assess the degree to which they are fulfilled.
Sludge Treatment and Disposal is the sixth volume in the series Biological Wastewater Treatment. The book covers in a clear and informative way the sludge characteristics, production, treatment (thickening, dewatering, stabilisation, pathogens removal) and disposal (land application for agricultural purposes, sanitary landfills, landfarming and other methods). Environmental and public health issues are also fully described. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors
Bioenergy is renewable energy obtained from biomass-any organic material that has stored sunlight in the form of chemical energy. Biogas is among the biofuels that can be obtained from biomass resources, including biodegradable wastes like manure, sewage sludge, the organic fraction of municipal solid wastes, slaughterhouse waste, crop residues, and more recently lignocellulosic biomass and algae. Within the framework of the circular economy, biogas production from biodegradable waste is particularly interesting, as it helps to save resources while reducing environmental pollution. Besides, lignocellulosic biomass and algae do not compete for arable land with food crops (in contrast with ene...
The 6th volume of Green Chemical Processing considers sustainable chemistry in the context of innovative and emerging technologies, explaining how they can support the “greening” of industry processes. The American Chemical Society’s 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
Anaerobic technology has become widely accepted by the environmental industry as a cost-effective alternative to the conventional aerobic process. In addition, with the intrinsic advantages of energy saving, reduced sludge yield, and production of biofuel, anaerobic process will be the favored green treatment technology for sustainable environment in years to come.Written by 40 renowned experts from 13 countries/regions, this book consists of 18 chapters compiling state-of-the-art information on new developments in various aspects of anaerobic technology. These include development of new types of reactors, uses of molecular techniques for microbial studies and mathematical modeling, productions of bio-hydrogen by fermentation and microbial electrolysis cell, as well as broadening applications to the treatment of municipal wastewater, effluents from chemical industry and agricultural wastes with high lignocellulose content./a
Coffee is one of the most popular drinks in the world but how does the production influence chemistry and quality? This book covers coffee production, quality and chemistry from the plant to the cup. Written by an international collection of contributors in the field who concentrate on coffee research, it is edited expertly to ensure quality of content, consistency and organization across the chapters. Aimed at advanced undergraduates, postgraduates and researchers and accompanied by a sister volume covering how health is influenced by the consumption of coffee, these titles provide an impactful and accessible guide to the current research in the field.