You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Guide to Protein Purification, Second Edition provides a complete update to existing methods in the field, reflecting the enormous advances made in the last two decades. In particular, proteomics, mass spectrometry, and DNA technology have revolutionized the field since the first edition's publication but through all of the advancements, the purification of proteins is still an indispensable first step in understanding their function. This volume examines the most reliable, robust methods for researchers in biochemistry, molecular and cell biology, genetics, pharmacology and biotechnology and sets a standard for best practices in the field. It relates how these traditional and new cutting-ed...
In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted concept...
This volume, of a two volume set on ionic liquids, focuses on the applications of ionic liquids in a growing range of areas. Throughout the 1990s, it seemed that most of the attention in the area of ionic liquids applications was directed toward their use as solvents for organic and transition-metal-catalyzed reactions. Certainly, this interest continues on to the present date, but the most innovative uses of ionic liquids span a much more diverse field than just synthesis. Some of the main topics of coverage include the application of RTILs in various electronic applications (batteries, capacitors, and light-emitting materials), polymers (synthesis and functionalization), nanomaterials (synthesis and stabilization), and separations. More unusual applications can be noted in the fields of biomass utilization, spectroscopy, optics, lubricants, fuels, and refrigerants. It is hoped that the diversity of this volume will serve as an inspiration for even further advances in the use of RTILs.
"The second, completely revised and enlarged edition of what has become the standard reference work in this fascinating field brings together the latest developments, supplemented by numerous practical tips, providing those working in both research and industry with an indispensable source of information. New contributions have been added, to reflect the fact that industrial processes are already established, and ionic liquids are now commercially available. A must for everyone working in the field."--Publisher's description.
None
Stroke is a major cause of death and disability in the U.S. and worldwide. A variety of pathophysiologic episodes or cellular medications occur following a stroke, and knowledge of these aftermath events can lead to potential therapeutic strategies that may reverse or attenuate stroke injury. Cellular events that occur following stroke include the excessive releases of excitatory amino acids, alterations in the genomic responses, mitochondrial injury producing reactive oxygen and nitrogen species (ROS), and secondary injury, often in the setting of reperfusion.
Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations.[1, 2] The term Amber is also used to refer to the empirical force fields that are implemented here.[3, 4] It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the ...