You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book’s dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. The chapters address the classical linear ...
Spatial Data Science introduces fundamental aspects of spatial data that every data scientist should know before they start working with spatial data. These aspects include how geometries are represented, coordinate reference systems (projections, datums), the fact that the Earth is round and its consequences for analysis, and how attributes of geometries can relate to geometries. In the second part of the book, these concepts are illustrated with data science examples using the R language. In the third part, statistical modelling approaches are demonstrated using real world data examples. After reading this book, the reader will be well equipped to avoid a number of major spatial data analy...
This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.
This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
This collection contains invited papers by distinguished statisticians to honour and acknowledge the contributions of Professor Dr. Dr. Helge Toutenburg to Statistics on the occasion of his sixty-?fth birthday. These papers present the most recent developments in the area of the linear model and its related topics. Helge Toutenburg is an established statistician and currently a Professor in the Department of Statistics at the University of Munich (Germany) and Guest Professor at the University of Basel (Switzerland). He studied Mathematics in his early years at Berlin and specialized in Statistics. Later he completed his dissertation (Dr. rer. nat. ) in 1969 on optimal prediction procedures ...
Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts w
This book constitutes the refereed proceedings of the Third Multidisciplinary International Symposium on Disinformation in Open Online Media, MISDOOM 2021, held in September 2021. The conference was held virtually due to the COVID-19 pandemic. The 9 full papers were carefully reviewed and selected from 27 submissions. The papers focus on health misinformation, hate speech, misinformation diffusion, news spreading behaviour and mitigation, harm-aware news recommender systems.
This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.