You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Sulfur is one of the most versatile elements in life. This book provides, for the first time, in-depth and integrated coverage of the functions of sulfur in phototrophic organisms including bacteria, plants and algae. It bridges gaps between biochemistry and cellular biology of sulfur in these organisms, and of biology and environments dominated by them. The book therefore provides a comprehensive overview of plant sulfur relations from genome to environment.
Growing plants have a constitutive demand for sulfur to synthesize proteins, sulfolipids and other essential sulfur containing molecules for growth and development. The uptake and subsequent distribution of sulfate is regulated in response to demand and environmental cues. The importance of sulfate for plant growth and vigor and hence crop yield and nutritional quality for human and animal diets has been clearly recognized. The acquisition of sulfur by plants, however, has become an increasingly important concern for the agriculture due to the decreasing S-emissions from industrial sources and the consequent limitation of inputs from atmospheric deposition. Molecular characterization involvi...
This proceedings volume contains a selection of invited and contributed papers of the 9th International Workshop on Sulfur Metabolism in Plants, which was hosted by Heinz Rennenberg, Albert-Ludwigs-University Freiburg and was held at Schloss Reinach, Freiburg-Munzigen, Germany from April 14-17, 2014. The focus of this workshop was on molecular physiology and ecophysiology of sulfur in plants and the content of this volume presents an overview on the current research developments in this field.
Plants are continuously exposed to a wide range of environmental conditions, including cold, drought, salt, heat, which have major impact on plant growth and development. To survive, plants have evolved complex physiological and biochemical adaptations to cope with a variety of adverse environmental stresses. Among them, reactive oxygen species (ROS) are key regulators and play pivotal roles during plant stress responses, which are thought to function as early signals during plant abiotic stress responses. ROS were long regarded as unwanted and toxic by-products of physiological metabolism. However, ROS are now recognized as central players in the complex signaling network of cells. Therefor...
Here is a comprehensive survey of all aspects of these fascinating bacteria, metabolically the most versatile organisms on Earth. It compiles 48 chapters written by leading experts, who highlight the huge progress made in studies of these bacteria since 1995.
The fascinating machinery that life uses to harness energy is the focus of this volume of the Advances in Photosynthesis and Respiration series. Experts in the field communicate their insights into the mechanisms that govern biological energy conversion from the atomic scale to the physiological integration within organisms. By leveraging the power of current structural techniques the authors reveal the inner workings of life.
“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.