You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum Proofs provides an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, it discusses non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*. Quantum Proofs is mainly intended for non-specialists having a basic background in complexity theory and quantum information. A typical reader may be a student or researcher in either area desiring to learn about the fundamentals of the (actively developing) theory of quantum interactive proofs.
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of...
This book constitutes the refereed proceedings of the Third International Conference on Computability in Europe, CiE 2007, held in Sienna, Italy, in June 2007. The 50 revised full papers presented together with 36 invited papers were carefully reviewed and selected from 167 submissions.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC 2011, held in Madrid, Spain, in May 2011. The 14 revised papers presented were carefully selected from numerous submissions. The papers present new and original research and cover a large range of topics in quantum computation, communication and cryptography, a new and interdisciplinary field at the intersection of computer science, information theory and quantum mechanics.
This book constitutes revised selected papers from the 7th Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC 2012, held in Tokyo, Japan, in May 2012. The 12 papers presented were carefully reviewed and selected for inclusion in this book. They contain original research on the rapidly growing, interdisciplinary field of quantum computation, communication and cryptography. Topics addressed are such as quantum algorithms, quantum computation models, quantum complexity theory, simulation of quantum systems, quantum programming languages, quantum cryptography, quantum communication, quantum estimation, quantum measurement, quantum tomography, completely positive maps, decoherence, quantum noise, quantum coding theory, fault-tolerant quantum computing, entanglement theory, and quantum teleportation.
This book offers an accessible and engaging introduction to quantum cryptography, assuming no prior knowledge in quantum computing. Essential background theory and mathematical techniques are introduced and applied in the analysis and design of quantum cryptographic protocols. The title explores several important applications such as quantum key distribution, quantum money, and delegated quantum computation, while also serving as a self-contained introduction to the field of quantum computing. With frequent illustrations and simple examples relevant to quantum cryptography, this title focuses on building intuition and challenges readers to understand the basis of cryptographic security. Frequent worked examples and mid-chapter exercises allow readers to extend their understanding, and in-text quizzes, end-of-chapter homework problems, and recommended further reading reinforce and broaden understanding. Online resources available to instructors include interactive computational problems in Julia, videos, lecture slides, and a fully worked solutions manual.
ICALP 2008, the 35th edition of the International Colloquium on Automata, Languages and Programming, was held in Reykjavik, Iceland, July 7–11, 2008. ICALP is a series of annual conferences of the European Association for Th- reticalComputer Science(EATCS) which ?rsttook placein 1972.This year,the ICALP program consisted of the established Track A (focusing on algorithms, automata,complexityandgames)andTrackB(focusing onlogic,semanticsand theory of programming), and of the recently introduced Track C (focusing on security and cryptography foundations). In response to the call for papers, the Program Committees received 477 submissions, the highest ever: 269 for Track A, 122 for TrackB and 86 for Track C. Out of these, 126 papers were selected for inclusion in the scienti?c program: 70 papers for Track A, 32 for Track B and 24 for Track C. The selection was made by the Program Committees based on originality, quality, and relevance to theoretical computer science. The quality of the manuscripts was very high indeed, and many deserving papers could not be selected. ICALP 2008 consisted of ?ve invited lectures and the contributed papers.
This book constitutes the joint refereed proceedings of the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2010, and the 14th International Workshop on Randomization and Computation, RANDOM 2010, held in Barcelona, Spain, in September 2010. The 28 revised full papers of the APPROX 2010 workshop and the 29 revised full papers of the RANDOM 2010 workshop included in this volume, were carefully reviewed and selected from 66 and 61 submissions, respectively. APPROX focuses on algorithmic and complexity issues surrounding the development of efficient approximate solutions to computationally difficult problems. RANDOM is concerned with applications of randomness to computational and combinatorial problems.
The year’s finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world—and you don’t need to be a mathematician to enjoy the pieces collected here. These essays—from leading names and fresh new voices—delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice, and taking readers behind the scenes of today’s hottest mathematical debates. Here, Viktor Blåsjö gives a brief history of “lockdown mathematics”; Yelda Nasifoglu decodes the politics of a seventeenth-century play in which the characters are geometric shapes; and Andrew Lewis-Pye explains the basic algorithmic rules and computational procedures behind cryptocurrencies. In other essays, Terence Tao candidly recalls the adventures and misadventures of growing up to become a leading mathematician; Natalie Wolchover shows how old math gives new clues about whether time really flows; and David Hand discusses the problem of “dark data”—information that is missing or ignored. And there is much, much more.
The two volume-set, LNCS 8042 and LNCS 8043, constitutes the refereed proceedings of the 33rd Annual International Cryptology Conference, CRYPTO 2013, held in Santa Barbara, CA, USA, in August 2013. The 61 revised full papers presented in LNCS 8042 and LNCS 8043 were carefully reviewed and selected from numerous submissions. Two abstracts of the invited talks are also included in the proceedings. The papers are organized in topical sections on lattices and FHE; foundations of hardness; cryptanalysis; MPC - new directions; leakage resilience; symmetric encryption and PRFs; key exchange; multi linear maps; ideal ciphers; implementation-oriented protocols; number-theoretic hardness; MPC - foundations; codes and secret sharing; signatures and authentication; quantum security; new primitives; and functional encryption.