You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
None
Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html
State-of-the-Art Methods for Drug Safety AssessmentResponding to the increased scrutiny of drug safety in recent years, Quantitative Evaluation of Safety in Drug Development: Design, Analysis and Reporting explains design, monitoring, analysis, and reporting issues for both clinical trials and observational studies in biopharmaceutical product deve
Accurate sample size calculation ensures that clinical studies have adequate power to detect clinically meaningful effects. This results in the efficient use of resources and avoids exposing a disproportionate number of patients to experimental treatments caused by an overpowered study. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research explains how to determine sample size for studies with correlated outcomes, which are widely implemented in medical, epidemiological, and behavioral studies. The book focuses on issues specific to the two types of correlated outcomes: longitudinal and clustered. For clustered studies, the authors provide sample size formulas...
None
Get Up to Speed on Many Types of Adaptive Designs Since the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the use of various adaptive design methods in clinical trials. New to the Second Edition Twelve new chapters covering blinded and semi-blinded sample size reestimation design, pick-the-winners design, biomarker-informed adaptive design, Bayesian designs, adaptive multiregional trial design, SAS and R for group sequential design, and much more More ana...
First multi-year cumulation covers six years: 1965-70.
Designed for students training to become biostatisticians as well as practicing biostatisticians, Inference Principles for Biostatisticians presents the theoretical and conceptual foundations of biostatistics. It covers the theoretical underpinnings essential to understanding subsequent core methodologies in the field. Drawing on his extensive experience teaching graduate-level biostatistics courses and working in the pharmaceutical industry, the author explains the main principles of statistical inference with many examples and exercises. Extended examples illustrate key concepts in depth using a specific biostatistical context. In addition, the author uses simulation to reinforce the repeated sampling interpretation of numerous statistical concepts. Reducing the computational complexities, he provides simple R functions for conducting simulation studies. This text gives graduate students with diverse backgrounds across the health, medical, social, and mathematical sciences a solid, unified foundation in the principles of statistical inference. This groundwork will lead students to develop a thorough understanding of biostatistical methodology.