You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume of Methods in Cell Biology is the 3e, and provides comprehensive compendia of laboratory protocols and reviews covering all the new methods developed since 2004. This new volume on Disease Models and Chemical Screens, covers two rapidly emerging and compelling applications of the zebrafish. - Details state-of-the art zebrafish protocols, delineating critical steps in the procedures as well as potential pitfalls - This volume concentrates on Disease Models and Chemical Screens
This volume looks at the study of oligodendrocytes through in vitro and in vivo techniques, multiple model organisms, using approaches that bridge scales from molecular through system. Chapters in this book cover topics such as fundamental molecular analyses of oligodendrocytes and myelin; in vitro, ex vivo, and in vivo molecular-cellular-electrophysiology-based techniques; oligodendrocyte formation, homeostasis, and disruption in zebrafish and Xenopus; and parallel system-level imaging of animal and human models. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Oligodendrocytes: Methods and Protocols is a valuable reference guide that highlights the expansive and fast-paced nature of research into oligodendrocyte biology underlying health and function.
Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.
This book examines the role of neurons in multiple sclerosis (MS) and the changes that occur in neurons as a result of MS. It places MS in a new and important perspective that not only explains the basis for symptom production, remission, and progress in MS, but also promises to open up new therapeutic possibilities.* Brings together the latest information from clinical, pathological, imaging, molecular, and pharmacological realms to explore the neurobiology of Multiple Sclerosis* Places MS in a new and important perspective that promises to open up new therapeutic avenues* Superbly illustrated and referenced
In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg