You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.
This book collects the Proceedings of a Congress held in Frascati (Rome) in the period July 1 -July 10, 1991, on the subject of harmonic analysis and discrete potential theory, and related topics. The Congress was made possible by the financial support of the Italian National Research Council ("Gruppo GNAFA"), the Ministry of University ("Gruppo Analisi Funzionale" of the University of Milano), the University of Rome "Tor Vergata", and was also patronized by the Centro "Vito Volterra" of the University of Rome "Tor Vergata". Financial support for publishing these Proceedings was provided by the University of Rome "Tor Vergata", and by a generous contribution of the Centro "Vito Volterra". I ...
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto’s achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
This work studies equivariant linear second order elliptic operators [italic capital]P on a connected noncompact manifold [italic capital]X with a given action of a group [italic capital]G. The action is assumed to be cocompact, meaning that [italic capitals]GV = [italic capital]X for some compact subset of [italic capital]V of [italic capital]X. The aim is to study the structure of the convex cone of all positive solutions of [italic capital]P[italic]u = 0.
The authors construct a complex [italic capital]K([italic capital]G) on which the automorphism group of [italic capital]G acts and use it to derive finiteness consequences for the group [capital Greek]Sigma [italic]Aut([italic capital]G). They prove that each component of [italic capital]K([italic capital]G) is contractible and describe the vertex stabilizers as elementary constructs involving the groups [italic capital]G[subscript italic]i and [italic]Aut([italic capital]G[subscript italic]i).
The study of finite rational matrix groups reduces to the investigation of the maximal finite irreducible matrix groups and their natural lattices, which often turn out to have rather beautiful geometric and arithmetic properties. This book presents a full classification in dimensions up to 23 and with restrictions in dimensions and p +1 and p-1 for all prime numbers p. Nonmaximal finite groups might act on several types of lattices and therefore embed into more than one maximal finite group. This gives rise to a simplicial complex interrelating the maximal finite groups and measuring the complexity of the dimension. Group theory, integral representation theory, arithmetic theory of quadratic forms and algorithmic methods are used.
The structural and algorithmic study of stability in nonexpansive networks is based on a representation of the possible assignments of Boolean values for a network as vertices in a Boolean hypercube under the associated Hamming metric. This global view takes advantage of the median properties of the hypercube, and extends to metric networks, where individual values are now chosen from the finite metric spaces and combined by means of an additive product operation. The relationship between products of metric spaces and products of graphs then establishes a connection between isometric representation in graphs and nonexpansiveness in metric networks.
Addresses the three-dimensional generalization of category, offering a full definition of tricategory; a proof of the coherence theorem for tricategories; and a modern source of material on Gray's tensor product of 2-categories. Of interest to research mathematicians; theoretical physicists, algebraic topologists; 3-D computer scientists; and theoretical computer scientists. Society members, $19.00. No index. Annotation copyright by Book News, Inc., Portland, OR
This book develops stochastic integration with respect to ``Brownian trees'' and its associated stochastic calculus, with the aim of proving pathwise existence and uniqueness in a stochastic equation driven by a historical Brownian motion. Perkins uses these results and a Girsanov-type theorem to prove that the martingale problem for the historical process associated with a wide class of interactive branching measure-valued diffusions (superprocesses) is well-posed. The resulting measure-valued processes will arise as limits of the empirical measures of branching particle systems in which particles interact through their spatial motions or, to a lesser extent, through their branching rates.