You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.
This edited book, Toxicology - New Aspects to This Scientific Conundrum, is intended to provide an overview on the different xenobiotics employed every day in our anthropogenic activities. We hope that this book will continue to meet the expectations and needs of all interested in the implications for the living species of known and new toxicants and to guide them in the future investigations.
With this handbook the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. The authors cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as: · quantum dots, nanoparticles, nanoporous materials, as well as nanowires, nanotubes and nanostructural polymers · nanocatalysis, nanolithography, nanomanipulation · methods for the synthesis of nanoparticles. The book can thus be recommended for everybody working in nanoscience: Beginners can acquaint themselves with the exciting subject, while specialists will find answers to all their questions plus helpful suggestions for further research.
The chemistry of nanomaterials has developed considerably in the past two decades, and concepts that have emerged from these developments are now well established. The surface modification of nanoparticles is a subject of intense research interest given its importance for many applications across a number of disciplines. This comprehensive guide is the first to be devoted to the surface chemistry of inorganic nanocrystals. Following an introduction to the physical chemistry of surfaces, chapters cover topics such as the surface modification of nanoparticles, water compatible, polymer-based, and inorganic nanocomposites, as well as relevant applications in catalysis, biotechnology and nanomedicine. Highlighting recent advances, Surface Chemistry of Colloidal Nanocrystals provides an integrated approach to chemical aspects related to the surface of nanocrystals. Written by prestigious scientists, this will be a useful resource for students and researchers working in surface science, nanoscience and materials science as well as those interested in the applications of the nanomaterials in areas such as health science, biology, and environmental engineering.
This book is a result of contributions of experts from international scientific community working in different aspects of nanocomposite science and applications and reports on the state of the art research and development findings on nanocomposites through original and innovative research studies. Through its 19 chapters the reader will have access to works related to the theory, and characterization of various types of nanocomposites such as composites of cellulose and metal nanoparticles, polymer/clay, polymer/Carbon and polymer-graphene nanocomposites and several other exciting topics while it introduces the various applications of nanocomposites in water treatment, supercapacitors, green energy generation, anticorrosive and antistatic applications, hard coatings, antiballistic and electroconductive scaffolds. Besides, it reviews multifunctional nanocomposites, photonics of dielectric nanostructures and electron scattering in nanocomposite materials.
This book includes fourteen chapters on photocatalysis. It provides a thorough overview of the latest research on photocatalysts and examines recent trends in the field. Chapters address such topics as metal-organic frameworks, semiconductors, self–cleaning coatings and surfaces, the use of “green” agents to fabricate materials, fabrication of advanced nanocomposites for the production of hydrogen, bifunctional catalysts for metal-air batteries, and much more.
This book gives a wide overview of the state-of-the-art applications of Raman spectroscopy in characterization of materials and biomaterials. The Raman signal is intrinsically smaller than other vibrational techniques; however, mainly through intensification processes, such as resonance Raman (RR) and surface-enhanced Raman spectroscopy (SERS), the Raman cross section can be strongly amplified. Thoroughly in these signal amplifications, the study of a diversity of chemical systems and the use of Raman technique for in situ and in vivo measurements is possible. The main goal of this book is to open up to an extended audience the possibilities of uses of Raman spectroscopy. In fact, this collective work will be beneficial to students, teachers, and researchers of many areas who are interested to expand their knowledge about Raman spectroscopy applied to nanotechnology, biotechnology, environmental science, inorganic chemistry, and health sciences.
This volume will present critical and comphrehensive reviews examining the latest research and developments in nanoscience in accessible articles. Quantum dot synthesis, soft lithography and graphene will feature in the debut volume, along with perspectives on research in China and India.
"Presentations of the 'Symposium on Photovoltaics for the 21st Century II' ... part of the 199th Meeting of the Electrochemical Society held in Washington, D.C. in March 2001"--Pref.