You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The third edition of this popular introduction to the classical underpinnings of the mathematics behind finance continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous arbitrage pricing of financial derivatives, including stochastic optimal control theory and Merton's fund separation theory, the book is designed for graduate students and combines necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. In this substantially extended new edition Bjork has added separate and complete chapters on the martingale approach to optimal investment problems, optimal stopping theory with applications to American options, and positive interest models and their connection to potential theory and stochastic discount factors. More advanced areas of study are clearly marked to help students and teachers use the book as it suits their needs.
The fourth edition of this widely used textbook on pricing and hedging of financial derivatives now also includes dynamic equilibrium theory and continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous time arbitrage pricing of financial derivatives, including stochastic optimal control theory and optimal stopping theory, Arbitrage Theory in Continuous Time is designed for graduate students in economics and mathematics, and combines the necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further read...
Develop a deep understanding and working knowledge of point-process theory as well as its applications in finance.
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and pr...
Financial Mathematics is an exciting, emerging field of application. The five sets of course notes in this book provide a bird's eye view of the current "state of the art" and directions of research. For graduate students it will therefore serve as an introduction to the field while reseachers will find it a compact source of reference. The reader is expected to have a good knowledge of the basic mathematical tools corresponding to an introductory graduate level, and sufficient familiarity with probabilistic methods, in particular stochastic analysis. B. Biais, J.C. Rochet: Risk-sharing, adverse selection and market structure.- T. Björk: Interest-rate theory.- J. Cvitanic: Optimal trading under constraints.- N. El Karoui, M.C. Quenez: Nonlinear pricing theory and backward stochastic differential equations.- E. Jouini: Market imperfections, equilibrium and arbitrage.
Today we live in what geologists have named the Anthropocene. The Earth has entered a new geological epoch, and the climate crisis is a reality. The crisis is so substantial and complex that our existing knowledge of environmental disasters is insufficient. Without the realization that we, as human beings, are intimately connected to all other kinds of life, we are guilty of a collective sin of omission by ignoring the fundamental connectedness of humanity and nature. We are not just part of the same cycle, we are nature. And since everything affects and is affected by everything else, it seems sufficient to consider the Anthropocene from many perspectives and fields.00'Connectedness' includes a diverse selection of contributions, including Björk, Greta Thunberg, Donna Haraway and Tomas Saraceno, that brings many perspectives and disciplines into the discussion to the crucial period in which we are currently living.
A rigorous introduction to the mathematics of pricing, construction and hedging of derivative securities.
March 29, 1900, is considered by many to be the day mathematical finance was born. On that day a French doctoral student, Louis Bachelier, successfully defended his thesis Théorie de la Spéculation at the Sorbonne. The jury, while noting that the topic was "far away from those usually considered by our candidates," appreciated its high degree of originality. This book provides a new translation, with commentary and background, of Bachelier's seminal work. Bachelier's thesis is a remarkable document on two counts. In mathematical terms Bachelier's achievement was to introduce many of the concepts of what is now known as stochastic analysis. His purpose, however, was to give a theory for the...
Developed for the professional Master's program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S. Has been tested in the classroom and revised over a period of several years Exercises conclude every chapter; some of these extend the theory while others are drawn from practical problems in quantitative finance
The Bachelier Society for Mathematical Finance held its first World Congress in Paris last year, and coincided with the centenary of Louis Bacheliers thesis defence. In his thesis Bachelier introduces Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options. The thesis is viewed by many the key event that marked the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included two Nobel laureates, Paul Samuelson and Robert Merton, and the mathematicians Henry McKean and S.R.S. Varadhan. Over 130 further selected talks were given in three parallel sessions. .