You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.
This book concerns modern methods in scientific computing and linear algebra, relevant to image and signal processing. For these applications, it is important to consider ingredients such as: (1) sophisticated mathematical models of the problems, including a priori knowledge, (2) rigorous mathematical theories to understand the difficulties of solving problems which are ill-posed, and (3) fast algorithms for either real-time or data-massive computations. Such are the topics brought into focus by these proceedings of the Workshop on Scientific Computing (held in Hong Kong on March 10-12, 1997, the sixth in such series of Workshops held in Hong Kong since 1990), where the major themes were on numerical linear algebra, signal processing, and image processing.
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Proceedings -- Parallel Computing.
The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis.
The topics in this volume range from basic research in numerical methods to applications in physics, mechanics, engineering, environmental science and other areas. These include: numerical methods (finite difference, finite element and boundary element methods; numerical methods of approximation theory; Monte-Carlo methods; preconditioning methods); parallel algorithms; applications of numerical methods.
The motivation for starting the work described in this book was the interest that Hewlett-Packard's microwave circuit designers had in simulation techniques that could tackle the problem of finding steady state solutions for nonlinear circuits, particularly circuits containing distributed elements such as transmission lines. Examining the problem of computing steady-state solutions in this context has led to a collection of novel numerical algorithms which we have gathered, along with some background material, into this book. Although we wished to appeal to as broad an audience as possible, to treat the subject in depth required maintaining a narrow focus. Our compromise was to assume that t...
Proceedings -- Parallel Computing.
A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.