You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory ...
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory ...
Modern Electronic Structure Theory provides a didactically oriented description of the latest computational techniques in electronic structure theory and their impact in several areas of chemistry. The book is aimed at first year graduate students or college seniors considering graduate study in computational chemistry, or researchers who wish to acquire a wider knowledge of this field.
This textbook introduces quantum physics using a modern computational approach, enabling students to model quantum phenomena.
This is the first book to present the necessary quantum chemical methods for both resonance types in one handy volume, emphasizing the crucial interrelation between NMR and EPR parameters from a computational and theoretical point of view. Here, readers are given a broad overview of all the pertinent topics, such as basic theory, methodic considerations, benchmark results and applications for both spectroscopy methods in such fields as biochemistry, bioinorganic chemistry as well as with different substance classes, including fullerenes, zeolites and transition metal compounds. The chapters have been written by leading experts in a given area, but with a wider audience in mind. The result is...
Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology includes peer-reviewed contributions based on carefully selected presentations given at the 17th International Workshop on Quantum Systems in Chemistry, Physics, and Biology. New trends and state-of-the-art developments in the quantum theory of atomic and molecular systems, and condensed matter (including biological systems and nanostructures) are described by academics of international distinction.
Observing computational chemistry's proven value to the introduction of new medicines, this reference offers the techniques most frequently utilized by industry and academia for ligand design. Featuring contributions from more than fifty pre-eminent scientists, Computational Medicinal Chemistry for Drug Discovery surveys molecular structure computation, intermolecular behavior, ligand-receptor interaction, and modeling responding to market demands in its selection and authoritative treatment of topics. The book examines molecular mechanics, semi-empirical methods, wave function-based quantum chemistry, density functional theory, 3-D structure generation, and hybrid methods.
For the first time in the history of chemical sciences, theoretical predictions have achieved the level of reliability that allows them to - val experimental measurements in accuracy on a routine basis. Only a decade ago, such a statement would be valid only with severe qualifi- tions as high-level quantum-chemical calculations were feasible only for molecules composed of a few atoms. Improvements in both hardware performance and the level of sophistication of electronic structure me- ods have contributed equally to this impressive progress that has taken place only recently. The contemporary chemist interested in predicting thermochemical properties such as the standard enthalpy of formatio...
The rivers run into the sea, yet the sea is not full Ecclesiastes What is quantum chemistry? The straightforward answer is that it is what quan tum chemists do. But it must be admitted, that in contrast to physicists and chemists, "quantum chemists" seem to be a rather ill-defined category of scientists. Quantum chemists are more or less physicists (basically theoreticians), more or less chemists, and by large, computationists. But first and foremost, we, quantum chemists; are conscious beings. We may safely guess that quantum chemistry was one of the first areas in the natural sciences to lie on the boundaries of many disciplines. We may certainly claim that quantum chemists were the first ...
Advances in Quantum Chemistry