Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine and Deep Learning Algorithms and Applications
  • Language: en
  • Pages: 123

Machine and Deep Learning Algorithms and Applications

This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets a...

Machine and Deep Learning Algorithms and Applications
  • Language: en
  • Pages: 115

Machine and Deep Learning Algorithms and Applications

This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets a...

Machine Vision
  • Language: en
  • Pages: 145

Machine Vision

Humans have used technology to expand our limited vision for millennia, from the invention of the stone mirror 8,000 years ago to the latest developments in facial recognition and augmented reality. We imagine that technologies will allow us to see more, to see differently and even to see everything. But each of these new ways of seeing carries its own blind spots. In this illuminating book, Jill Walker Rettberg examines the long history of machine vision. Providing an overview of the historical and contemporary uses of machine vision, she unpacks how technologies such as smart surveillance cameras and TikTok filters are changing the way we see the world and one another. By analysing fiction...

Sensor Analysis for the Internet of Things
  • Language: en
  • Pages: 127

Sensor Analysis for the Internet of Things

While it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals. Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types. We provide some basic understanding of sensor operation for accelerometers, magnetometers, gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.

Reconstruction-Free Compressive Vision for Surveillance Applications
  • Language: en
  • Pages: 102

Reconstruction-Free Compressive Vision for Surveillance Applications

Compressed sensing (CS) allows signals and images to be reliably inferred from undersampled measurements. Exploiting CS allows the creation of new types of high-performance sensors including infrared cameras and magnetic resonance imaging systems. Advances in computer vision and deep learning have enabled new applications of automated systems. In this book, we introduce reconstruction-free compressive vision, where image processing and computer vision algorithms are embedded directly in the compressive domain, without the need for first reconstructing the measurements into images or video. Reconstruction of CS images is computationally expensive and adds to system complexity. Therefore, reco...

IoT for Smart Grids
  • Language: en
  • Pages: 289

IoT for Smart Grids

  • Type: Book
  • -
  • Published: 2018-11-24
  • -
  • Publisher: Springer

This book explains the fundamentals of control theory for Internet of Things (IoT) systems and smart grids and its applications. It discusses the challenges imposed by large-scale systems, and describes the current and future trends and challenges in decision-making for IoT in detail, showing the ongoing industrial and academic research in the field of smart grid domain applications. It presents step-by-step design guidelines for the modeling, design, customisation and calibration of IoT systems applied to smart grids, in which the challenges increase with each system’s increasing complexity. It also provides solutions and detailed examples to demonstrate how to use the techniques to overc...

MATLAB® Software for the Code Excited Linear Prediction Algorithm
  • Language: en
  • Pages: 105

MATLAB® Software for the Code Excited Linear Prediction Algorithm

This book describes several modules of the Code Excited Linear Prediction (CELP) algorithm. The authors use the Federal Standard-1016 CELP MATLAB® software to describe in detail several functions and parameter computations associated with analysis-by-synthesis linear prediction. The book begins with a description of the basics of linear prediction followed by an overview of the FS-1016 CELP algorithm. Subsequent chapters describe the various modules of the CELP algorithm in detail. In each chapter, an overall functional description of CELP modules is provided along with detailed illustrations of their MATLAB® implementation. Several code examples and plots are provided to highlight some of the key CELP concepts. Link to MATLAB® code found within the book Table of Contents: Introduction to Linear Predictive Coding / Autocorrelation Analysis and Linear Prediction / Line Spectral Frequency Computation / Spectral Distortion / The Codebook Search / The FS-1016 Decoder

An Introduction to Kalman Filtering with MATLAB Examples
  • Language: en
  • Pages: 77

An Introduction to Kalman Filtering with MATLAB Examples

The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript.

Audio Source Separation
  • Language: en
  • Pages: 389

Audio Source Separation

  • Type: Book
  • -
  • Published: 2018-03-01
  • -
  • Publisher: Springer

This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a fur...

Digital Signal Processing - an Interactive Approach
  • Language: en

Digital Signal Processing - an Interactive Approach

  • Type: Book
  • -
  • Published: 2014-04-01
  • -
  • Publisher: Unknown

None