You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An introduction to interval analysis for scientists and engineers interested in scientific computation, especially using INTLAB/MATLAB®.
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
This two-volume-set (LNCS 7203 and 7204) constitutes the refereed proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics, PPAM 2011, held in Torun, Poland, in September 2011. The 130 revised full papers presented in both volumes were carefully reviewed and selected from numerous submissions. The papers address issues such as parallel/distributed architectures and mobile computing; numerical algorithms and parallel numerics; parallel non-numerical algorithms; tools and environments for parallel/distributed/grid computing; applications of parallel/distributed computing; applied mathematics, neural networks and evolutionary computing; history of computing.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities ...
The two volume set LNCS 7133 and LNCS 7134 constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Applied Parallel and Scientific Computing, PARA 2010, held in Reykjavík, Iceland, in June 2010. These volumes contain three keynote lectures, 29 revised papers and 45 minisymposia presentations arranged on the following topics: cloud computing, HPC algorithms, HPC programming tools, HPC in meteorology, parallel numerical algorithms, parallel computing in physics, scientific computing tools, HPC software engineering, simulations of atomic scale systems, tools and environments for accelerator based computational biomedicine, GPU computing, high performance computing interval methods, real-time access and processing of large data sets, linear algebra algorithms and software for multicore and hybrid architectures in honor of Fred Gustavson on his 75th birthday, memory and multicore issues in scientific computing - theory and praxis, multicore algorithms and implementations for application problems, fast PDE solvers and a posteriori error estimates, and scalable tools for high performance computing.
Application Specific Processors is written for use by engineers who are developing specialized systems (application specific systems). Traditionally, most high performance signal processors have been realized with application specific processors. The explanation is that application specific processors can be tailored to exactly match the (usually very demanding) application requirements. The result is that no `processing power' is wasted for unnecessary capabilities and maximum performance is achieved. A disadvantage is that such processors have been expensive to design since each is a unique design that is customized to the specific application. In the last decade, computer-aided design sys...
This book presents, as a single package, three semingly contradictory and often competitive approaches to deal with ever present uncertainty in science and engineering. The book describes, as a unique view, probabilistic, fuzzy sets based and antioptimization based approaches, in order to remedy the present "tower ob Babel” situation, in which researchers in competing fields do not communicate. Integrative approach will attract scientists and engineers alike and provide a strong impetus towards integrative, hybrid approaches.
This volume contains 19 contributions from the International Symposium for Computational Science, 1999. Topics covered include delivery mechanisms for numerial algorithms, intelligent systems for recommending scientific software and the architecture of scientific problem-solving environments.
This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.