You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field. Provides a full working description of the main fundamental tools in the theorists toolbox which have proven themselves on the field of quantum magnetism in recent years. Concludes by focusing on the most important cuurent materials form an experimental viewpoint, thus linking back to the initial theoretical concepts.
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
In Bird of Passage by Rudolf Peierls, we find a paragraph in which he de scribes his Cambridge days in the 1930s: On these [relativistic field theory] problems my main contacts were Dirac, and the younger theoreticians. These included in particular Nevill (now Sir Nevill) Mott, perhaps the friendliest among many kind and friendly people we met then. Professor Kamimura became associated with Sir Rudolf Peierls in the 1950s, when he translated, with his colleagues, Peierls's 1955 textbook, Quantum Theory of Solids, into Japanese. This edition, to which Sir Rudolf himself contributed a preface, benefitted early generations of Japanese solid state physicists. Later in 1974/5, during a sabbatical...
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This monograph provides an introduction to field-theoretic simulations in classical soft matter and Bose quantum fluids. The method represents a new class of molecular computer simulation in which continuous fields, rather than particle coordinates, are sampled and evolved. Field-theoretic simulations are capable of analysing the properties of systems that are challenging for traditional simulation techniques, including dense phases of high molecular weight polymers, self-assembling fluids, and quantum fluids at finite temperature. The monograph details analytical methods for converting classical and quantum many-body problems to equilibrium field theory models with a molecular basis. Numerical methods are described that enable efficient, accurate, and scalable simulations of such models on modern computer hardware, including graphics processing units (GPUs). Extensions to non-equilibrium systems are discussed, along with an introduction to advanced field-theoretic simulation techniques including free energy estimation, alternative ensembles, coarse-graining, and variable cell methods.
Density Matrix Renormalization Group (DMRG)-based Approaches in Computational Chemistry outlines important theories and algorithms of DMRG-based approaches and explores their use in computational chemistry. Beginning with an introduction to DMRG and DMRG-based approaches, the book goes on to discuss the key theories and applications of DMRG, from DMRG for semi-empirical and ab-initio quantum chemistry, to DMRG in embedded environments, frequency spaces and quantum dynamics. Drawing on the experience of its expert authors, sections detail recent ideas and key developments, providing an up-to-date view of current developments in the field for students and researchers in quantum chemistry. - Provides an expertly-curated, consolidated overview of research in the field - Includes exercises that support learning and link theory to practice - Outlines key theories and algorithms for computational chemistry applications
This series of books contains selected and edited lectures from summer schools organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of topical, introductory lectures. This is reflected by both the selection of topics addressed in the present volume, nanoelectronics, as well as the tutorial aspect of the contributions.
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.
This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.