Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Cohomological Methods in Homotopy Theory
  • Language: en
  • Pages: 413

Cohomological Methods in Homotopy Theory

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

This book contains a collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. A call for articles was made on the occasion of an emphasis semester organized by the Centre de Recerca Matemtica in Bellaterra (Barcelona) in 1998. The main topics treated in the book include abstract features of stable and unstable homotopy, homotopical localizations, p-compact groups, H-spaces, classifying spaces for proper actions, cohomology of discrete groups, K-theory and other generalized cohomology theories, configuration spaces, and Lusternik-Schnirelmann category. The book is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory. New research directions in topology are highlighted. Moreover, this informative and educational book serves as a welcome reference for many new results and recent methods.

Stable Homotopy Around the Arf-Kervaire Invariant
  • Language: en
  • Pages: 250

Stable Homotopy Around the Arf-Kervaire Invariant

Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .

Noncommutative Geometry and Physics 3
  • Language: en
  • Pages: 537

Noncommutative Geometry and Physics 3

Noncommutative differential geometry has many actual and potential applications to several domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field.

Quantum Field Theory and Manifold Invariants
  • Language: en
  • Pages: 476

Quantum Field Theory and Manifold Invariants

This volume contains lectures from the Graduate Summer School “Quantum Field Theory and Manifold Invariants” held at Park City Mathematics Institute 2019. The lectures span topics in topology, global analysis, and physics, and they range from introductory to cutting edge. Topics treated include mathematical gauge theory (anti-self-dual equations, Seiberg-Witten equations, Higgs bundles), classical and categorified knot invariants (Khovanov homology, Heegaard Floer homology), instanton Floer homology, invertible topological field theory, BPS states and spectral networks. This collection presents a rich blend of geometry and topology, with some theoretical physics thrown in as well, and so provides a snapshot of a vibrant and fast-moving field. Graduate students with basic preparation in topology and geometry can use this volume to learn advanced background material before being brought to the frontiers of current developments. Seasoned researchers will also benefit from the systematic presentation of exciting new advances by leaders in their fields.

Topology, Geometry and Quantum Field Theory
  • Language: en
  • Pages: 596

Topology, Geometry and Quantum Field Theory

The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Manifolds and $K$-Theory
  • Language: en
  • Pages: 274

Manifolds and $K$-Theory

This volume contains the proceedings of the conference on Manifolds, -Theory, and Related Topics, held from June 23–27, 2014, in Dubrovnik, Croatia. The articles contained in this volume are a collection of research papers featuring recent advances in homotopy theory, -theory, and their applications to manifolds. Topics covered include homotopy and manifold calculus, structured spectra, and their applications to group theory and the geometry of manifolds. This volume is a tribute to the influence of Tom Goodwillie in these fields.

Lectures on Field Theory and Topology
  • Language: en
  • Pages: 202

Lectures on Field Theory and Topology

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory...

The Many Facets of Geometry
  • Language: en
  • Pages: 453

The Many Facets of Geometry

This title celebrates the academic career of Professor Nigel Hitchin - one of the most influential figures in the field of differential and algebraic geometry.

Fifty Years of Women in Mathematics
  • Language: en
  • Pages: 1087

Fifty Years of Women in Mathematics

The Association for Women in Mathematics (AWM), the oldest organization in the world for women in mathematics, had its fiftieth anniversary in 2021. This collection of refereed articles, illustrated by color photographs, reflects on women in mathematics and the organization as a whole. Some articles focus on the situation for women in mathematics at various times and places, including other countries. Others describe how individuals have shaped AWM, and, in turn, how the organization has impacted individuals as well as the broader mathematical community. Some are personal stories about careers in mathematics. Fifty Years of Women in Mathematics: Reminiscences, History, and Visions for the Fu...

Hodge Theory and Classical Algebraic Geometry
  • Language: en
  • Pages: 148

Hodge Theory and Classical Algebraic Geometry

This volume contains the proceedings of a conference on Hodge Theory and Classical Algebraic Geometry, held May 13-15, 2013, at The Ohio State University, Columbus, OH. Hodge theory is a powerful tool for the study and classification of algebraic varieties. This volume surveys recent progress in Hodge theory, its generalizations, and applications. The topics range from more classical aspects of Hodge theory to modern developments in compactifications of period domains, applications of Saito's theory of mixed Hodge modules, and connections with derived category theory and non-commutative motives.