You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Chief Scientist Dr. Antone Brooks and his Low Dose Radiation Research Program team redefined the field, applying advances in instrumentation and molecular biology from the Human Genome Project and developing new technologies to examine cellular responses. Their findings were startling. At low doses, biological reactions are unique and often unrelated to those that occur at high doses. The influential linear-no-threshold model--which predicted that damage from acute exposures can be extrapolated linearly to low dose exposures--was flawed. Small doses of radiation can have an adaptive protective effect. "Hit theory," the idea that radiation only affected cells it directly traversed, yielded to "bystander theory," which hypothesizes that cells communicate with each other and a dose to one affects others surrounding it. Low Dose Radiation describes the program's development, the scientists who made it viable, and the fundamental results, highlighting lessons learned during its lifespan.
A history of the origins and development of the American atomic bomb program during WWII. Begins with the scientific developments of the pre-war years. Details the role of the U.S. government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. Concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission. Chapters: the Einstein letter; physics background, 1919-1939; early government support; the atomic bomb and American strategy; and the Manhattan district in peacetime. Illustrated.
First multi-year cumulation covers six years: 1965-70.
Provides information about the U.S. Department of Energy (DOE), a science and technology agency that supports energy security, national security, environmental quality, and contributes to a better quality of life for all Americans. Includes news items, an organizational chart, and a history of the DOE. Offers access to information on international science centers and U.S. science centers and museums. Contains a site search engine, as well as information on field and operations offices and DOE laboratories. Links to other federal government agencies.
ITER presents the United States and its international partners with the opportunity to explore new and exciting frontiers of plasma science while bringing the promise of fusion energy closer to reality. The ITER project has garnered the commitment and will draw on the scientific potential of seven international partners, China, the European Union, India, Japan, the Republic of Korea, Russia, and the United States, countries that represent more than half of the world's population. The success of ITER will depend on each partner's ability to fully engage itself in the scientific and technological challenges posed by advancing our understanding of fusion. In this book, the National Research Council assesses the current U.S. Department of Energy (DOE) plan for U.S. fusion community participation in ITER, evaluates the plan's elements, and recommends appropriate goals, procedures, and metrics for consideration in the future development of the plan.