You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Results of research on classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields.
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
No detailed description available for "Probabilistic Methods in Discrete Mathematics".
The work of Joseph Fels Ritt and Ellis Kolchin in differential algebra paved the way for exciting new applications in constructive symbolic computation, differential Galois theory, the model theory of fields, and Diophantine geometry. This volume assembles Kolchin's mathematical papers, contributing solidly to the archive on construction of modern differential algebra. This collection of Kolchin's clear and comprehensive papers--in themselves constituting a history of the subject--is an invaluable aid to the student of differential algebra. In 1910, Ritt created a theory of algebraic differential equations modeled not on the existing transcendental methods of Lie, but rather on the new algeb...
No detailed description available for "Random Forests".
This book explains similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient.
This monograph should be of interest to a broad spectrum of readers: specialists in discrete and continuous mathematics, physicists, engineers, and others interested in computing sums and applying complex analysis in discrete mathematics. It contains investigations on the problem of finding integral representations for and computing finite and infinite sums (generating functions); these arise in practice in combinatorial analysis, the theory of algorithms and programming on a computer, probability theory, group theory, and function theory, as well as in physics and other areas of knowledge. A general approach is presented for computing sums and other expressions in closed form by reducing them to one-dimensional and multiple integrals, most often to contour integrals.
Differential algebra explores properties of solutions of systems of (ordinary or partial, linear or non-linear) differential equations from an algebraic point of view. It includes as special cases algebraic systems as well as differential systems with algebraic constraints. This algebraic theory of Joseph F Ritt and Ellis R Kolchin is further enriched by its interactions with algebraic geometry, Diophantine geometry, differential geometry, model theory, control theory, automatic theorem proving, combinatorics, and difference equations. Differential algebra now plays an important role in computational methods such as symbolic integration and symmetry analysis of differential equations. These ...
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.