You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.
This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.
This volume contains contributions from the conference on "Algebras, Representations and Applications" (Maresias, Brazil, August 26-September 1, 2007), in honor of Ivan Shestakov's 60th birthday. The collection of papers presented here is of great interest to graduate students and researchers working in the theory of Lie and Jordan algebras and superalgebras and their representations, Hopf algebras, Poisson algebras, Quantum Groups, Group Rings and other topics.
Proceedings of a NATO ASI held in Cargèse, France, July 22-August 3, 1996
The book aims to survey recent developments in quantum algebras and related topics. Quantum groups were introduced by Drinfeld and Jimbo in 1985 in their work on Yang?Baxter equations. The subject from the very beginning has been an interesting one for both mathematics and theoretical physics. For example, Yangian is a special example of quantum group, corresponding to rational solution of Yang?Baxter equation. Viewed as a generalization of the symmetric group, Yangians also have close connections to algebraic combinatorics. This is the proceeding for the International Workshop on Quantized Algebra and Physics. The workshop aims to gather experts and young investigators from China and abroad to discuss research problems in integrable systems, conformal field theory, string theory, Lie theory, quantum groups including Yangians and their representations.
None